Optimal. Leaf size=24 \[ 4+e^{25}+e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \left (-24+8 x-4 \log \left (\frac {e^{2 x}}{x^6}\right )+\log ^2\left (\frac {e^{2 x}}{x^6}\right )\right )}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}}+\frac {8 e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}} (-3+x)}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )}-\frac {4 e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log \left (\frac {e^{2 x}}{x^6}\right )}\right ) \, dx\\ &=-\left (4 \int \frac {e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log \left (\frac {e^{2 x}}{x^6}\right )} \, dx\right )+8 \int \frac {e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}} (-3+x)}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )} \, dx+\int e^{\frac {-4 x+x \log \left (\frac {e^{2 x}}{x^6}\right )}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \, dx\\ &=-\left (4 \int \frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log \left (\frac {e^{2 x}}{x^6}\right )} \, dx\right )+8 \int \frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} (-3+x)}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )} \, dx+\int e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \, dx\\ &=-\left (4 \int \frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log \left (\frac {e^{2 x}}{x^6}\right )} \, dx\right )+8 \int \left (-\frac {3 e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )}+\frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} x}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )}\right ) \, dx+\int e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \, dx\\ &=-\left (4 \int \frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log \left (\frac {e^{2 x}}{x^6}\right )} \, dx\right )+8 \int \frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} x}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )} \, dx-24 \int \frac {e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}}}{\log ^2\left (\frac {e^{2 x}}{x^6}\right )} \, dx+\int e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 19, normalized size = 0.79 \begin {gather*} e^{x-\frac {4 x}{\log \left (\frac {e^{2 x}}{x^6}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 28, normalized size = 1.17 \begin {gather*} e^{\left (\frac {x \log \left (\frac {e^{\left (2 \, x\right )}}{x^{6}}\right ) - 4 \, x}{\log \left (\frac {e^{\left (2 \, x\right )}}{x^{6}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.43, size = 17, normalized size = 0.71 \begin {gather*} e^{\left (x - \frac {4 \, x}{\log \left (\frac {e^{\left (2 \, x\right )}}{x^{6}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F(-1)] time = 180.00, size = 0, normalized size = 0.00 hanged
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 16, normalized size = 0.67 \begin {gather*} e^{\left (x - \frac {6 \, \log \relax (x)}{x - 3 \, \log \relax (x)} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.17, size = 39, normalized size = 1.62 \begin {gather*} {\mathrm {e}}^{-\frac {4\,x-2\,x^2}{2\,x+\ln \left (\frac {1}{x^6}\right )}}\,{\left (\frac {1}{x^6}\right )}^{\frac {x}{2\,x+\ln \left (\frac {1}{x^6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 125.29, size = 26, normalized size = 1.08 \begin {gather*} e^{\frac {x \log {\left (\frac {e^{2 x}}{x^{6}} \right )} - 4 x}{\log {\left (\frac {e^{2 x}}{x^{6}} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________