Optimal. Leaf size=26 \[ -4+(5+x) \left (2 x+e^{-\frac {1}{5} x^3 (4+x)^4} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 17.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} e^{\frac {1}{5} \left (-256 x^3-256 x^4-96 x^5-16 x^6-x^7\right )} \left (25+10 x-3840 x^3-5888 x^4-3424 x^5-960 x^6-131 x^7-7 x^8+e^{\frac {1}{5} \left (256 x^3+256 x^4+96 x^5+16 x^6+x^7\right )} (50+20 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {1}{5} \left (-256 x^3-256 x^4-96 x^5-16 x^6-x^7\right )} \left (25+10 x-3840 x^3-5888 x^4-3424 x^5-960 x^6-131 x^7-7 x^8+e^{\frac {1}{5} \left (256 x^3+256 x^4+96 x^5+16 x^6+x^7\right )} (50+20 x)\right ) \, dx\\ &=\frac {1}{5} \int e^{-\frac {1}{5} x^3 (4+x)^4} \left (25+10 x-3840 x^3-5888 x^4-3424 x^5-960 x^6-131 x^7-7 x^8+10 e^{\frac {1}{5} x^3 (4+x)^4} (5+2 x)\right ) \, dx\\ &=\frac {1}{5} \int \left (25 e^{-\frac {1}{5} x^3 (4+x)^4}+10 e^{-\frac {1}{5} x^3 (4+x)^4} x-3840 e^{-\frac {1}{5} x^3 (4+x)^4} x^3-5888 e^{-\frac {1}{5} x^3 (4+x)^4} x^4-3424 e^{-\frac {1}{5} x^3 (4+x)^4} x^5-960 e^{-\frac {1}{5} x^3 (4+x)^4} x^6-131 e^{-\frac {1}{5} x^3 (4+x)^4} x^7-7 e^{-\frac {1}{5} x^3 (4+x)^4} x^8+10 (5+2 x)\right ) \, dx\\ &=\frac {1}{2} (5+2 x)^2-\frac {7}{5} \int e^{-\frac {1}{5} x^3 (4+x)^4} x^8 \, dx+2 \int e^{-\frac {1}{5} x^3 (4+x)^4} x \, dx+5 \int e^{-\frac {1}{5} x^3 (4+x)^4} \, dx-\frac {131}{5} \int e^{-\frac {1}{5} x^3 (4+x)^4} x^7 \, dx-192 \int e^{-\frac {1}{5} x^3 (4+x)^4} x^6 \, dx-\frac {3424}{5} \int e^{-\frac {1}{5} x^3 (4+x)^4} x^5 \, dx-768 \int e^{-\frac {1}{5} x^3 (4+x)^4} x^3 \, dx-\frac {5888}{5} \int e^{-\frac {1}{5} x^3 (4+x)^4} x^4 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.06, size = 37, normalized size = 1.42 \begin {gather*} e^{-\frac {1}{5} x^3 (4+x)^4} \left (1+2 e^{\frac {1}{5} x^3 (4+x)^4}\right ) x (5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.04, size = 71, normalized size = 2.73 \begin {gather*} {\left (x^{2} + 2 \, {\left (x^{2} + 5 \, x\right )} e^{\left (\frac {1}{5} \, x^{7} + \frac {16}{5} \, x^{6} + \frac {96}{5} \, x^{5} + \frac {256}{5} \, x^{4} + \frac {256}{5} \, x^{3}\right )} + 5 \, x\right )} e^{\left (-\frac {1}{5} \, x^{7} - \frac {16}{5} \, x^{6} - \frac {96}{5} \, x^{5} - \frac {256}{5} \, x^{4} - \frac {256}{5} \, x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 70, normalized size = 2.69 \begin {gather*} x^{2} e^{\left (-\frac {1}{5} \, x^{7} - \frac {16}{5} \, x^{6} - \frac {96}{5} \, x^{5} - \frac {256}{5} \, x^{4} - \frac {256}{5} \, x^{3}\right )} + 2 \, x^{2} + 5 \, x e^{\left (-\frac {1}{5} \, x^{7} - \frac {16}{5} \, x^{6} - \frac {96}{5} \, x^{5} - \frac {256}{5} \, x^{4} - \frac {256}{5} \, x^{3}\right )} + 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 1.23
method | result | size |
risch | \(2 x^{2}+10 x +\frac {\left (5 x^{2}+25 x \right ) {\mathrm e}^{-\frac {\left (4+x \right )^{4} x^{3}}{5}}}{5}\) | \(32\) |
norman | \(\left (x^{2}+5 x +2 x^{2} {\mathrm e}^{\frac {1}{5} x^{7}+\frac {16}{5} x^{6}+\frac {96}{5} x^{5}+\frac {256}{5} x^{4}+\frac {256}{5} x^{3}}+10 \,{\mathrm e}^{\frac {1}{5} x^{7}+\frac {16}{5} x^{6}+\frac {96}{5} x^{5}+\frac {256}{5} x^{4}+\frac {256}{5} x^{3}} x \right ) {\mathrm e}^{-\frac {1}{5} x^{7}-\frac {16}{5} x^{6}-\frac {96}{5} x^{5}-\frac {256}{5} x^{4}-\frac {256}{5} x^{3}}\) | \(100\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 44, normalized size = 1.69 \begin {gather*} 2 \, x^{2} + {\left (x^{2} + 5 \, x\right )} e^{\left (-\frac {1}{5} \, x^{7} - \frac {16}{5} \, x^{6} - \frac {96}{5} \, x^{5} - \frac {256}{5} \, x^{4} - \frac {256}{5} \, x^{3}\right )} + 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.15, size = 34, normalized size = 1.31 \begin {gather*} x\,\left ({\mathrm {e}}^{-\frac {x^7}{5}-\frac {16\,x^6}{5}-\frac {96\,x^5}{5}-\frac {256\,x^4}{5}-\frac {256\,x^3}{5}}+2\right )\,\left (x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 49, normalized size = 1.88 \begin {gather*} 2 x^{2} + 10 x + \left (x^{2} + 5 x\right ) e^{- \frac {x^{7}}{5} - \frac {16 x^{6}}{5} - \frac {96 x^{5}}{5} - \frac {256 x^{4}}{5} - \frac {256 x^{3}}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________