Optimal. Leaf size=29 \[ \log \left (5-\frac {3}{x \left (\frac {6 x}{5}+\frac {e^x}{\log (x-\log (x))}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 13.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-36 x^2+36 x \log (x)\right ) \log (x-\log (x))+\frac {e^x \left (-15+15 x+\left (-15 x-15 x^2+(15+15 x) \log (x)\right ) \log (x-\log (x))\right )}{\log (x-\log (x))}}{e^x \left (15 x^2-60 x^4+\left (-15 x+60 x^3\right ) \log (x)\right )+\frac {e^{2 x} \left (-25 x^3+25 x^2 \log (x)\right )}{\log (x-\log (x))}+\left (18 x^3-36 x^5+\left (-18 x^2+36 x^4\right ) \log (x)\right ) \log (x-\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-5 e^x (-1+x)+5 e^x (1+x) (x-\log (x)) \log (x-\log (x))+12 x (x-\log (x)) \log ^2(x-\log (x))\right )}{x (x-\log (x)) \left (25 e^{2 x} x+15 e^x \left (-1+4 x^2\right ) \log (x-\log (x))+18 x \left (-1+2 x^2\right ) \log ^2(x-\log (x))\right )} \, dx\\ &=3 \int \frac {-5 e^x (-1+x)+5 e^x (1+x) (x-\log (x)) \log (x-\log (x))+12 x (x-\log (x)) \log ^2(x-\log (x))}{x (x-\log (x)) \left (25 e^{2 x} x+15 e^x \left (-1+4 x^2\right ) \log (x-\log (x))+18 x \left (-1+2 x^2\right ) \log ^2(x-\log (x))\right )} \, dx\\ &=3 \int \left (\frac {2 (-1+x) (-1+x \log (x-\log (x))-\log (x) \log (x-\log (x)))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}-\frac {-1+x+2 x^2-2 x^3-x \log (x-\log (x))-x^2 \log (x-\log (x))-2 x^3 \log (x-\log (x))+2 x^4 \log (x-\log (x))+\log (x) \log (x-\log (x))+x \log (x) \log (x-\log (x))+2 x^2 \log (x) \log (x-\log (x))-2 x^3 \log (x) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}\right ) \, dx\\ &=-\left (3 \int \frac {-1+x+2 x^2-2 x^3-x \log (x-\log (x))-x^2 \log (x-\log (x))-2 x^3 \log (x-\log (x))+2 x^4 \log (x-\log (x))+\log (x) \log (x-\log (x))+x \log (x) \log (x-\log (x))+2 x^2 \log (x) \log (x-\log (x))-2 x^3 \log (x) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx\right )+6 \int \frac {(-1+x) (-1+x \log (x-\log (x))-\log (x) \log (x-\log (x)))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx\\ &=-\left (3 \int \frac {-1+x+2 x^2-2 x^3+\left (-1-x-2 x^2+2 x^3\right ) (x-\log (x)) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x+\left (-3+6 x^2\right ) \log (x-\log (x))\right )} \, dx\right )+6 \int \left (-\frac {-1+x \log (x-\log (x))-\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}+\frac {x (-1+x \log (x-\log (x))-\log (x) \log (x-\log (x)))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}\right ) \, dx\\ &=-\left (3 \int \left (\frac {1}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}-\frac {1}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}+\frac {2 x}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}-\frac {2 x^2}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}-\frac {\log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}-\frac {x \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}-\frac {2 x^2 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}+\frac {2 x^3 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}+\frac {\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}+\frac {\log (x) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}+\frac {2 x \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}-\frac {2 x^2 \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )}\right ) \, dx\right )-6 \int \frac {-1+x \log (x-\log (x))-\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx+6 \int \frac {x (-1+x \log (x-\log (x))-\log (x) \log (x-\log (x)))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx\\ &=-\left (3 \int \frac {1}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx\right )+3 \int \frac {1}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+3 \int \frac {\log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+3 \int \frac {x \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-3 \int \frac {\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-3 \int \frac {\log (x) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x^3 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {-1+(x-\log (x)) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx+6 \int \frac {x (-1+(x-\log (x)) \log (x-\log (x)))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx\\ &=-\left (3 \int \frac {1}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx\right )+3 \int \frac {1}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+3 \int \frac {\log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+3 \int \frac {x \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-3 \int \frac {\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-3 \int \frac {\log (x) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x^3 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \left (-\frac {1}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}+\frac {x \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}-\frac {\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}\right ) \, dx+6 \int \left (-\frac {x}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}+\frac {x^2 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}-\frac {x \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )}\right ) \, dx\\ &=-\left (3 \int \frac {1}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx\right )+3 \int \frac {1}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+3 \int \frac {\log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+3 \int \frac {x \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-3 \int \frac {\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-3 \int \frac {\log (x) \log (x-\log (x))}{x (x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {1}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx-6 \int \frac {x}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx-6 \int \frac {x \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx+6 \int \frac {\log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx-6 \int \frac {x \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x+6 x \log (x-\log (x))\right )} \, dx-6 \int \frac {x}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x^3 \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx-6 \int \frac {x \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx+6 \int \frac {x^2 \log (x) \log (x-\log (x))}{(x-\log (x)) \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.56, size = 63, normalized size = 2.17 \begin {gather*} 3 \left (-\frac {\log (x)}{3}-\frac {1}{3} \log \left (5 e^x+6 x \log (x-\log (x))\right )+\frac {1}{3} \log \left (5 e^x x-3 \log (x-\log (x))+6 x^2 \log (x-\log (x))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 51, normalized size = 1.76 \begin {gather*} -\log \left (6 \, x + 5 \, e^{\left (x - \log \left (\log \left (x - \log \relax (x)\right )\right )\right )}\right ) + \log \left (\frac {6 \, x^{2} + 5 \, x e^{\left (x - \log \left (\log \left (x - \log \relax (x)\right )\right )\right )} - 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 51, normalized size = 1.76 \begin {gather*} \log \left (6 \, x^{2} \log \left (x - \log \relax (x)\right ) + 5 \, x e^{x} - 3 \, \log \left (x - \log \relax (x)\right )\right ) - \log \left (6 \, x \log \left (x - \log \relax (x)\right ) + 5 \, e^{x}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 47, normalized size = 1.62
method | result | size |
risch | \(\ln \left (\frac {{\mathrm e}^{x}}{\ln \left (x -\ln \relax (x )\right )}+\frac {\frac {6 x^{2}}{5}-\frac {3}{5}}{x}\right )-\ln \left (\frac {{\mathrm e}^{x}}{\ln \left (x -\ln \relax (x )\right )}+\frac {6 x}{5}\right )\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 70, normalized size = 2.41 \begin {gather*} \log \left (2 \, x^{2} - 1\right ) - 2 \, \log \relax (x) + \log \left (\frac {5 \, x e^{x} + 3 \, {\left (2 \, x^{2} - 1\right )} \log \left (x - \log \relax (x)\right )}{3 \, {\left (2 \, x^{2} - 1\right )}}\right ) - \log \left (\frac {6 \, x \log \left (x - \log \relax (x)\right ) + 5 \, e^{x}}{6 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {\ln \left (x-\ln \relax (x)\right )\,\left (36\,x\,\ln \relax (x)-36\,x^2\right )-{\mathrm {e}}^{x-\ln \left (\ln \left (x-\ln \relax (x)\right )\right )}\,\left (\ln \left (x-\ln \relax (x)\right )\,\left (15\,x-\ln \relax (x)\,\left (15\,x+15\right )+15\,x^2\right )-15\,x+15\right )}{\ln \left (x-\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (18\,x^2-36\,x^4\right )-18\,x^3+36\,x^5\right )-{\mathrm {e}}^{2\,x-2\,\ln \left (\ln \left (x-\ln \relax (x)\right )\right )}\,\ln \left (x-\ln \relax (x)\right )\,\left (25\,x^2\,\ln \relax (x)-25\,x^3\right )+{\mathrm {e}}^{x-\ln \left (\ln \left (x-\ln \relax (x)\right )\right )}\,\ln \left (x-\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (15\,x-60\,x^3\right )-15\,x^2+60\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________