Optimal. Leaf size=29 \[ e^{-x} \left (-x+\left (-e^5+\log (x)\right ) \left (-9+x-\frac {4}{\log (\log (2))}\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.60, antiderivative size = 88, normalized size of antiderivative = 3.03, number of steps used = 14, number of rules used = 7, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {12, 6742, 2176, 2194, 2554, 2199, 2178} \begin {gather*} \left (1+e^5\right ) \left (-e^{-x}\right ) x+e^{-x}-\left (1+e^5\right ) e^{-x}+e^{-x} \log (x)+\frac {e^{-x} \log (x) (x \log (\log (2))-2 (2+5 \log (\log (2))))}{\log (\log (2))}+\frac {2 e^{5-x} (2+5 \log (\log (2)))}{\log (\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{-x} \left (-4-4 e^5 x+4 x \log (x)+\left (-9+x^2+e^5 \left (-10 x+x^2\right )+\left (10 x-x^2\right ) \log (x)\right ) \log (\log (2))\right )}{x} \, dx}{\log (\log (2))}\\ &=\frac {\int \left (-e^{-x} \log (x) (-4-10 \log (\log (2))+x \log (\log (2)))+\frac {e^{-x} \left (-4-9 \log (\log (2))+\left (1+e^5\right ) x^2 \log (\log (2))-2 e^5 x (2+5 \log (\log (2)))\right )}{x}\right ) \, dx}{\log (\log (2))}\\ &=-\frac {\int e^{-x} \log (x) (-4-10 \log (\log (2))+x \log (\log (2))) \, dx}{\log (\log (2))}+\frac {\int \frac {e^{-x} \left (-4-9 \log (\log (2))+\left (1+e^5\right ) x^2 \log (\log (2))-2 e^5 x (2+5 \log (\log (2)))\right )}{x} \, dx}{\log (\log (2))}\\ &=e^{-x} \log (x)+\frac {e^{-x} \log (x) (x \log (\log (2))-2 (2+5 \log (\log (2))))}{\log (\log (2))}+\frac {\int \frac {e^{-x} (4+9 \log (\log (2))-x \log (\log (2)))}{x} \, dx}{\log (\log (2))}+\frac {\int \left (\frac {e^{-x} (-4-9 \log (\log (2)))}{x}+e^{-x} \left (1+e^5\right ) x \log (\log (2))-2 e^{5-x} (2+5 \log (\log (2)))\right ) \, dx}{\log (\log (2))}\\ &=e^{-x} \log (x)+\frac {e^{-x} \log (x) (x \log (\log (2))-2 (2+5 \log (\log (2))))}{\log (\log (2))}+\left (1+e^5\right ) \int e^{-x} x \, dx+\frac {\int \left (-e^{-x} \log (\log (2))+\frac {e^{-x} (4+9 \log (\log (2)))}{x}\right ) \, dx}{\log (\log (2))}+\frac {(-4-9 \log (\log (2))) \int \frac {e^{-x}}{x} \, dx}{\log (\log (2))}-\frac {(2 (2+5 \log (\log (2)))) \int e^{5-x} \, dx}{\log (\log (2))}\\ &=-e^{-x} \left (1+e^5\right ) x+e^{-x} \log (x)+\frac {2 e^{5-x} (2+5 \log (\log (2)))}{\log (\log (2))}-\frac {\text {Ei}(-x) (4+9 \log (\log (2)))}{\log (\log (2))}+\frac {e^{-x} \log (x) (x \log (\log (2))-2 (2+5 \log (\log (2))))}{\log (\log (2))}+\left (1+e^5\right ) \int e^{-x} \, dx+\frac {(4+9 \log (\log (2))) \int \frac {e^{-x}}{x} \, dx}{\log (\log (2))}-\int e^{-x} \, dx\\ &=e^{-x}-e^{-x} \left (1+e^5\right )-e^{-x} \left (1+e^5\right ) x+e^{-x} \log (x)+\frac {2 e^{5-x} (2+5 \log (\log (2)))}{\log (\log (2))}+\frac {e^{-x} \log (x) (x \log (\log (2))-2 (2+5 \log (\log (2))))}{\log (\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 50, normalized size = 1.72 \begin {gather*} \frac {e^{-x} \left (-x \log (\log (2))+e^5 (4+9 \log (\log (2))-x \log (\log (2)))+\log (x) (-4-9 \log (\log (2))+x \log (\log (2)))\right )}{\log (\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.05, size = 54, normalized size = 1.86 \begin {gather*} -\frac {4 \, e^{\left (-x\right )} \log \relax (x) - {\left ({\left (x - 9\right )} e^{\left (-x\right )} \log \relax (x) - {\left ({\left (x - 9\right )} e^{5} + x\right )} e^{\left (-x\right )}\right )} \log \left (\log \relax (2)\right ) - 4 \, e^{\left (-x + 5\right )}}{\log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 78, normalized size = 2.69 \begin {gather*} \frac {x e^{\left (-x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) - x e^{\left (-x\right )} \log \left (\log \relax (2)\right ) - x e^{\left (-x + 5\right )} \log \left (\log \relax (2)\right ) - 9 \, e^{\left (-x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) - 4 \, e^{\left (-x\right )} \log \relax (x) + 9 \, e^{\left (-x + 5\right )} \log \left (\log \relax (2)\right ) + 4 \, e^{\left (-x + 5\right )}}{\log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 50, normalized size = 1.72
method | result | size |
norman | \(\left (x \ln \relax (x )+\left (-{\mathrm e}^{5}-1\right ) x +\frac {{\mathrm e}^{5} \left (9 \ln \left (\ln \relax (2)\right )+4\right )}{\ln \left (\ln \relax (2)\right )}-\frac {\left (9 \ln \left (\ln \relax (2)\right )+4\right ) \ln \relax (x )}{\ln \left (\ln \relax (2)\right )}\right ) {\mathrm e}^{-x}\) | \(50\) |
risch | \(\frac {\left (x \ln \left (\ln \relax (2)\right )-9 \ln \left (\ln \relax (2)\right )-4\right ) {\mathrm e}^{-x} \ln \relax (x )}{\ln \left (\ln \relax (2)\right )}-\frac {\left ({\mathrm e}^{5} \ln \left (\ln \relax (2)\right ) x -9 \,{\mathrm e}^{5} \ln \left (\ln \relax (2)\right )+x \ln \left (\ln \relax (2)\right )-4 \,{\mathrm e}^{5}\right ) {\mathrm e}^{-x}}{\ln \left (\ln \relax (2)\right )}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {{\left (x e^{5} + e^{5}\right )} e^{\left (-x\right )} \log \left (\log \relax (2)\right ) + {\left (x + 1\right )} e^{\left (-x\right )} \log \left (\log \relax (2)\right ) + 10 \, e^{\left (-x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) + 4 \, e^{\left (-x\right )} \log \relax (x) - {\left ({\left (x + 1\right )} e^{\left (-x\right )} \log \relax (x) - {\rm Ei}\left (-x\right ) + e^{\left (-x\right )}\right )} \log \left (\log \relax (2)\right ) - {\rm Ei}\left (-x\right ) \log \left (\log \relax (2)\right ) - 10 \, e^{\left (-x + 5\right )} \log \left (\log \relax (2)\right ) - 4 \, e^{\left (-x + 5\right )}}{\log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.60, size = 69, normalized size = 2.38 \begin {gather*} \frac {{\mathrm {e}}^{5-x}\,\left (9\,\ln \left (\ln \relax (2)\right )+4\right )-{\mathrm {e}}^{-x}\,\ln \relax (x)\,\left (9\,\ln \left (\ln \relax (2)\right )+4\right )}{\ln \left (\ln \relax (2)\right )}-\frac {x\,\left ({\mathrm {e}}^{-x}\,\ln \left (\ln \relax (2)\right )\,\left ({\mathrm {e}}^5+1\right )-{\mathrm {e}}^{-x}\,\ln \left (\ln \relax (2)\right )\,\ln \relax (x)\right )}{\ln \left (\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.60, size = 65, normalized size = 2.24 \begin {gather*} \frac {\left (x \log {\relax (x )} \log {\left (\log {\relax (2 )} \right )} - x \log {\left (\log {\relax (2 )} \right )} - x e^{5} \log {\left (\log {\relax (2 )} \right )} - 4 \log {\relax (x )} - 9 \log {\relax (x )} \log {\left (\log {\relax (2 )} \right )} + 9 e^{5} \log {\left (\log {\relax (2 )} \right )} + 4 e^{5}\right ) e^{- x}}{\log {\left (\log {\relax (2 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________