Optimal. Leaf size=23 \[ \frac {\log (4)}{x \left (-1+2 x+(x-4 x (5+x))^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (1-4 x-1083 x^2-608 x^3-80 x^4\right ) \log (4)}{x^2-4 x^3-718 x^4+1140 x^5+130897 x^6+109808 x^7+34656 x^8+4864 x^9+256 x^{10}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (4) \int \frac {1-4 x-1083 x^2-608 x^3-80 x^4}{x^2-4 x^3-718 x^4+1140 x^5+130897 x^6+109808 x^7+34656 x^8+4864 x^9+256 x^{10}} \, dx\\ &=\log (4) \int \left (\frac {1}{x^2}-\frac {2 \left (363+589 x+184 x^2+16 x^3\right )}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2}-\frac {(19+4 x)^2}{-1+2 x+361 x^2+152 x^3+16 x^4}\right ) \, dx\\ &=-\frac {\log (4)}{x}-\log (4) \int \frac {(19+4 x)^2}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx-(2 \log (4)) \int \frac {363+589 x+184 x^2+16 x^3}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2} \, dx\\ &=-\frac {\log (4)}{x}-\frac {\log (4)}{2 \left (1-2 x-361 x^2-152 x^3-16 x^4\right )}-\frac {1}{32} \log (4) \int \frac {23200+26144 x+4480 x^2}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2} \, dx-\log (4) \int \left (\frac {361}{-1+2 x+361 x^2+152 x^3+16 x^4}+\frac {152 x}{-1+2 x+361 x^2+152 x^3+16 x^4}+\frac {16 x^2}{-1+2 x+361 x^2+152 x^3+16 x^4}\right ) \, dx\\ &=-\frac {\log (4)}{x}-\frac {\log (4)}{2 \left (1-2 x-361 x^2-152 x^3-16 x^4\right )}-\frac {1}{32} \log (4) \int \left (\frac {23200}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2}+\frac {26144 x}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2}+\frac {4480 x^2}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2}\right ) \, dx-(16 \log (4)) \int \frac {x^2}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx-(152 \log (4)) \int \frac {x}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx-(361 \log (4)) \int \frac {1}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx\\ &=-\frac {\log (4)}{x}-\frac {\log (4)}{2 \left (1-2 x-361 x^2-152 x^3-16 x^4\right )}-(16 \log (4)) \int \frac {x^2}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx-(140 \log (4)) \int \frac {x^2}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2} \, dx-(152 \log (4)) \int \frac {x}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx-(361 \log (4)) \int \frac {1}{-1+2 x+361 x^2+152 x^3+16 x^4} \, dx-(725 \log (4)) \int \frac {1}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2} \, dx-(817 \log (4)) \int \frac {x}{\left (-1+2 x+361 x^2+152 x^3+16 x^4\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.22 \begin {gather*} -\frac {\log (4)}{x-2 x^2-361 x^3-152 x^4-16 x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 30, normalized size = 1.30 \begin {gather*} \frac {2 \, \log \relax (2)}{16 \, x^{5} + 152 \, x^{4} + 361 \, x^{3} + 2 \, x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 30, normalized size = 1.30 \begin {gather*} \frac {2 \, \log \relax (2)}{16 \, x^{5} + 152 \, x^{4} + 361 \, x^{3} + 2 \, x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.30
method | result | size |
gosper | \(\frac {2 \ln \relax (2)}{x \left (16 x^{4}+152 x^{3}+361 x^{2}+2 x -1\right )}\) | \(30\) |
norman | \(\frac {2 \ln \relax (2)}{x \left (16 x^{4}+152 x^{3}+361 x^{2}+2 x -1\right )}\) | \(30\) |
risch | \(\frac {2 \ln \relax (2)}{x \left (16 x^{4}+152 x^{3}+361 x^{2}+2 x -1\right )}\) | \(30\) |
default | \(2 \ln \relax (2) \left (-\frac {-x^{3}-\frac {19}{2} x^{2}-\frac {361}{16} x -\frac {1}{8}}{x^{4}+\frac {19}{2} x^{3}+\frac {361}{16} x^{2}+\frac {1}{8} x -\frac {1}{16}}-\frac {1}{x}\right )\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 30, normalized size = 1.30 \begin {gather*} \frac {2 \, \log \relax (2)}{16 \, x^{5} + 152 \, x^{4} + 361 \, x^{3} + 2 \, x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 29, normalized size = 1.26 \begin {gather*} \frac {2\,\ln \relax (2)}{x\,\left (16\,x^4+152\,x^3+361\,x^2+2\,x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 26, normalized size = 1.13 \begin {gather*} \frac {2 \log {\relax (2 )}}{16 x^{5} + 152 x^{4} + 361 x^{3} + 2 x^{2} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________