Optimal. Leaf size=25 \[ -1+\left (e^{2+2 x}-\log \left (-2-e^{5 x}+x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 3, number of rules used = 3, integrand size = 105, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6688, 12, 6686} \begin {gather*} \left (e^{2 x+2}-\log \left (x-e^{5 x}-2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1-5 e^{5 x}+2 e^{2+7 x}-2 e^{2+2 x} (-2+x)\right ) \left (e^{2+2 x}-\log \left (-2-e^{5 x}+x\right )\right )}{2+e^{5 x}-x} \, dx\\ &=2 \int \frac {\left (1-5 e^{5 x}+2 e^{2+7 x}-2 e^{2+2 x} (-2+x)\right ) \left (e^{2+2 x}-\log \left (-2-e^{5 x}+x\right )\right )}{2+e^{5 x}-x} \, dx\\ &=\left (e^{2+2 x}-\log \left (-2-e^{5 x}+x\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 23, normalized size = 0.92 \begin {gather*} \left (e^{2+2 x}-\log \left (-2-e^{5 x}+x\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 55, normalized size = 2.20 \begin {gather*} -2 \, e^{\left (2 \, x + 2\right )} \log \left ({\left ({\left (x - 2\right )} e^{5} - e^{\left (5 \, x + 5\right )}\right )} e^{\left (-5\right )}\right ) + \log \left ({\left ({\left (x - 2\right )} e^{5} - e^{\left (5 \, x + 5\right )}\right )} e^{\left (-5\right )}\right )^{2} + e^{\left (4 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left ({\left (2 \, e^{\left (4 \, x + 4\right )} - 5 \, e^{\left (2 \, x + 2\right )}\right )} e^{\left (5 \, x\right )} - 2 \, {\left (x - 2\right )} e^{\left (4 \, x + 4\right )} - {\left ({\left (2 \, e^{\left (2 \, x + 2\right )} - 5\right )} e^{\left (5 \, x\right )} - 2 \, {\left (x - 2\right )} e^{\left (2 \, x + 2\right )} + 1\right )} \log \left (x - e^{\left (5 \, x\right )} - 2\right ) + e^{\left (2 \, x + 2\right )}\right )}}{x - e^{\left (5 \, x\right )} - 2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 38, normalized size = 1.52
method | result | size |
risch | \({\mathrm e}^{4 x +4}-2 \,{\mathrm e}^{2 x +2} \ln \left (-{\mathrm e}^{5 x}+x -2\right )+\ln \left (-{\mathrm e}^{5 x}+x -2\right )^{2}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 37, normalized size = 1.48 \begin {gather*} -2 \, e^{\left (2 \, x + 2\right )} \log \left (x - e^{\left (5 \, x\right )} - 2\right ) + \log \left (x - e^{\left (5 \, x\right )} - 2\right )^{2} + e^{\left (4 \, x + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 38, normalized size = 1.52 \begin {gather*} {\ln \left (x-{\mathrm {e}}^{5\,x}-2\right )}^2-2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^2\,\ln \left (x-{\mathrm {e}}^{5\,x}-2\right )+{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________