Optimal. Leaf size=18 \[ \frac {4+\frac {-3+\frac {1}{e^4}}{x^2}}{15 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.22, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {12, 14} \begin {gather*} \frac {4}{15 x}-\frac {3-\frac {1}{e^4}}{15 x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-3+e^4 \left (9-4 x^2\right )}{x^4} \, dx}{15 e^4}\\ &=\frac {\int \left (\frac {3 \left (-1+3 e^4\right )}{x^4}-\frac {4 e^4}{x^2}\right ) \, dx}{15 e^4}\\ &=-\frac {3-\frac {1}{e^4}}{15 x^3}+\frac {4}{15 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 1.28 \begin {gather*} \frac {1+e^4 \left (-3+4 x^2\right )}{15 e^4 x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 19, normalized size = 1.06 \begin {gather*} \frac {{\left ({\left (4 \, x^{2} - 3\right )} e^{4} + 1\right )} e^{\left (-4\right )}}{15 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 1.11 \begin {gather*} \frac {{\left (4 \, x^{2} e^{4} - 3 \, e^{4} + 1\right )} e^{\left (-4\right )}}{15 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 1.17
method | result | size |
risch | \(\frac {\left (4 x^{2} {\mathrm e}^{4}-3 \,{\mathrm e}^{4}+1\right ) {\mathrm e}^{-4}}{15 x^{3}}\) | \(21\) |
default | \(\frac {{\mathrm e}^{-4} \left (\frac {4 \,{\mathrm e}^{4}}{x}-\frac {9 \,{\mathrm e}^{4}-3}{3 x^{3}}\right )}{15}\) | \(26\) |
gosper | \(\frac {\left (4 x^{2} {\mathrm e}^{4}-3 \,{\mathrm e}^{4}+1\right ) {\mathrm e}^{-4}}{15 x^{3}}\) | \(27\) |
norman | \(\frac {\left (\frac {4 x^{2} {\mathrm e}^{2}}{15}-\frac {\left (3 \,{\mathrm e}^{4}-1\right ) {\mathrm e}^{-2}}{15}\right ) {\mathrm e}^{-2}}{x^{3}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 1.11 \begin {gather*} \frac {{\left (4 \, x^{2} e^{4} - 3 \, e^{4} + 1\right )} e^{\left (-4\right )}}{15 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.97, size = 20, normalized size = 1.11 \begin {gather*} \frac {\frac {4\,x^2}{15}-\frac {{\mathrm {e}}^{-4}\,\left (3\,{\mathrm {e}}^4-1\right )}{15}}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 24, normalized size = 1.33 \begin {gather*} - \frac {- 4 x^{2} e^{4} - 1 + 3 e^{4}}{15 x^{3} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________