Optimal. Leaf size=33 \[ \left (-x+4 x^2\right ) \left (-x+\left (4+\frac {e^{2 e}}{25}\right )^4 x^4\right ) \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 192, normalized size of antiderivative = 5.82, number of steps used = 12, number of rules used = 3, integrand size = 181, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {12, 2356, 2304} \begin {gather*} -\frac {2 \left (100+e^{2 e}\right )^4 x^6}{1171875}+\frac {2 e^{8 e} x^6}{1171875}+\frac {32 e^{6 e} x^6}{46875}+\frac {64}{625} e^{4 e} x^6+\frac {512}{75} e^{2 e} x^6+\frac {512 x^6}{3}+\frac {4 \left (100+e^{2 e}\right )^4 x^6 \log (x)}{390625}+\frac {\left (100+e^{2 e}\right )^4 x^5}{1953125}-\frac {e^{8 e} x^5}{1953125}-\frac {16 e^{6 e} x^5}{78125}-\frac {96 e^{4 e} x^5}{3125}-\frac {256}{125} e^{2 e} x^5-\frac {256 x^5}{5}-\frac {\left (100+e^{2 e}\right )^4 x^5 \log (x)}{390625}-4 x^3 \log (x)+x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (390625 x-1562500 x^2-100000000 x^4+400000000 x^5+e^{8 e} \left (-x^4+4 x^5\right )+e^{6 e} \left (-400 x^4+1600 x^5\right )+e^{4 e} \left (-60000 x^4+240000 x^5\right )+e^{2 e} \left (-4000000 x^4+16000000 x^5\right )+\left (781250 x-4687500 x^2-500000000 x^4+2400000000 x^5+e^{8 e} \left (-5 x^4+24 x^5\right )+e^{6 e} \left (-2000 x^4+9600 x^5\right )+e^{4 e} \left (-300000 x^4+1440000 x^5\right )+e^{2 e} \left (-20000000 x^4+96000000 x^5\right )\right ) \log (x)\right ) \, dx}{390625}\\ &=\frac {x^2}{2}-\frac {4 x^3}{3}-\frac {256 x^5}{5}+\frac {512 x^6}{3}+\frac {\int \left (781250 x-4687500 x^2-500000000 x^4+2400000000 x^5+e^{8 e} \left (-5 x^4+24 x^5\right )+e^{6 e} \left (-2000 x^4+9600 x^5\right )+e^{4 e} \left (-300000 x^4+1440000 x^5\right )+e^{2 e} \left (-20000000 x^4+96000000 x^5\right )\right ) \log (x) \, dx}{390625}+\frac {e^{2 e} \int \left (-4000000 x^4+16000000 x^5\right ) \, dx}{390625}+\frac {e^{4 e} \int \left (-60000 x^4+240000 x^5\right ) \, dx}{390625}+\frac {e^{6 e} \int \left (-400 x^4+1600 x^5\right ) \, dx}{390625}+\frac {e^{8 e} \int \left (-x^4+4 x^5\right ) \, dx}{390625}\\ &=\frac {x^2}{2}-\frac {4 x^3}{3}-\frac {256 x^5}{5}-\frac {256}{125} e^{2 e} x^5-\frac {96 e^{4 e} x^5}{3125}-\frac {16 e^{6 e} x^5}{78125}-\frac {e^{8 e} x^5}{1953125}+\frac {512 x^6}{3}+\frac {512}{75} e^{2 e} x^6+\frac {64}{625} e^{4 e} x^6+\frac {32 e^{6 e} x^6}{46875}+\frac {2 e^{8 e} x^6}{1171875}+\frac {\int \left (781250 x \log (x)-4687500 x^2 \log (x)-5 \left (100+e^{2 e}\right )^4 x^4 \log (x)+24 \left (100+e^{2 e}\right )^4 x^5 \log (x)\right ) \, dx}{390625}\\ &=\frac {x^2}{2}-\frac {4 x^3}{3}-\frac {256 x^5}{5}-\frac {256}{125} e^{2 e} x^5-\frac {96 e^{4 e} x^5}{3125}-\frac {16 e^{6 e} x^5}{78125}-\frac {e^{8 e} x^5}{1953125}+\frac {512 x^6}{3}+\frac {512}{75} e^{2 e} x^6+\frac {64}{625} e^{4 e} x^6+\frac {32 e^{6 e} x^6}{46875}+\frac {2 e^{8 e} x^6}{1171875}+2 \int x \log (x) \, dx-12 \int x^2 \log (x) \, dx-\frac {\left (100+e^{2 e}\right )^4 \int x^4 \log (x) \, dx}{78125}+\frac {\left (24 \left (100+e^{2 e}\right )^4\right ) \int x^5 \log (x) \, dx}{390625}\\ &=-\frac {256 x^5}{5}-\frac {256}{125} e^{2 e} x^5-\frac {96 e^{4 e} x^5}{3125}-\frac {16 e^{6 e} x^5}{78125}-\frac {e^{8 e} x^5}{1953125}+\frac {\left (100+e^{2 e}\right )^4 x^5}{1953125}+\frac {512 x^6}{3}+\frac {512}{75} e^{2 e} x^6+\frac {64}{625} e^{4 e} x^6+\frac {32 e^{6 e} x^6}{46875}+\frac {2 e^{8 e} x^6}{1171875}-\frac {2 \left (100+e^{2 e}\right )^4 x^6}{1171875}+x^2 \log (x)-4 x^3 \log (x)-\frac {\left (100+e^{2 e}\right )^4 x^5 \log (x)}{390625}+\frac {4 \left (100+e^{2 e}\right )^4 x^6 \log (x)}{390625}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 29, normalized size = 0.88 \begin {gather*} \frac {x^2 (-1+4 x) \left (-390625+\left (100+e^{2 e}\right )^4 x^3\right ) \log (x)}{390625} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 96, normalized size = 2.91 \begin {gather*} \frac {1}{390625} \, {\left (400000000 \, x^{6} - 100000000 \, x^{5} - 1562500 \, x^{3} + 390625 \, x^{2} + {\left (4 \, x^{6} - x^{5}\right )} e^{\left (8 \, e\right )} + 400 \, {\left (4 \, x^{6} - x^{5}\right )} e^{\left (6 \, e\right )} + 60000 \, {\left (4 \, x^{6} - x^{5}\right )} e^{\left (4 \, e\right )} + 4000000 \, {\left (4 \, x^{6} - x^{5}\right )} e^{\left (2 \, e\right )}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 276, normalized size = 8.36 \begin {gather*} \frac {4}{390625} \, x^{6} e^{\left (8 \, e\right )} \log \relax (x) + \frac {64}{15625} \, x^{6} e^{\left (6 \, e\right )} \log \relax (x) + \frac {384}{625} \, x^{6} e^{\left (4 \, e\right )} \log \relax (x) + \frac {1024}{25} \, x^{6} e^{\left (2 \, e\right )} \log \relax (x) - \frac {2}{1171875} \, x^{6} e^{\left (8 \, e\right )} - \frac {32}{46875} \, x^{6} e^{\left (6 \, e\right )} - \frac {64}{625} \, x^{6} e^{\left (4 \, e\right )} - \frac {512}{75} \, x^{6} e^{\left (2 \, e\right )} + 1024 \, x^{6} \log \relax (x) - \frac {1}{390625} \, x^{5} e^{\left (8 \, e\right )} \log \relax (x) - \frac {16}{15625} \, x^{5} e^{\left (6 \, e\right )} \log \relax (x) - \frac {96}{625} \, x^{5} e^{\left (4 \, e\right )} \log \relax (x) - \frac {256}{25} \, x^{5} e^{\left (2 \, e\right )} \log \relax (x) + \frac {1}{1953125} \, x^{5} e^{\left (8 \, e\right )} + \frac {16}{78125} \, x^{5} e^{\left (6 \, e\right )} + \frac {96}{3125} \, x^{5} e^{\left (4 \, e\right )} + \frac {256}{125} \, x^{5} e^{\left (2 \, e\right )} - 256 \, x^{5} \log \relax (x) - 4 \, x^{3} \log \relax (x) + x^{2} \log \relax (x) + \frac {1}{5859375} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (8 \, e\right )} + \frac {16}{234375} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (6 \, e\right )} + \frac {32}{3125} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (4 \, e\right )} + \frac {256}{375} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (2 \, e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 87, normalized size = 2.64
method | result | size |
norman | \(x^{2} \ln \relax (x )+\left (-\frac {{\mathrm e}^{8 \,{\mathrm e}}}{390625}-\frac {16 \,{\mathrm e}^{6 \,{\mathrm e}}}{15625}-\frac {96 \,{\mathrm e}^{4 \,{\mathrm e}}}{625}-\frac {256 \,{\mathrm e}^{2 \,{\mathrm e}}}{25}-256\right ) x^{5} \ln \relax (x )+\left (\frac {4 \,{\mathrm e}^{8 \,{\mathrm e}}}{390625}+\frac {64 \,{\mathrm e}^{6 \,{\mathrm e}}}{15625}+\frac {384 \,{\mathrm e}^{4 \,{\mathrm e}}}{625}+\frac {1024 \,{\mathrm e}^{2 \,{\mathrm e}}}{25}+1024\right ) x^{6} \ln \relax (x )-4 x^{3} \ln \relax (x )\) | \(87\) |
risch | \(\frac {x^{2} \left (4 \,{\mathrm e}^{8 \,{\mathrm e}} x^{4}-{\mathrm e}^{8 \,{\mathrm e}} x^{3}+1600 \,{\mathrm e}^{6 \,{\mathrm e}} x^{4}-400 \,{\mathrm e}^{6 \,{\mathrm e}} x^{3}+240000 \,{\mathrm e}^{4 \,{\mathrm e}} x^{4}-60000 \,{\mathrm e}^{4 \,{\mathrm e}} x^{3}+16000000 x^{4} {\mathrm e}^{2 \,{\mathrm e}}-4000000 \,{\mathrm e}^{2 \,{\mathrm e}} x^{3}+400000000 x^{4}-100000000 x^{3}-1562500 x +390625\right ) \ln \relax (x )}{390625}\) | \(103\) |
default | \(x^{2} \ln \relax (x )-4 x^{3} \ln \relax (x )+1024 x^{6} \ln \relax (x )-256 x^{5} \ln \relax (x )-\frac {2 \,{\mathrm e}^{8 \,{\mathrm e}} x^{6}}{1171875}+\frac {x^{5} {\mathrm e}^{8 \,{\mathrm e}}}{1953125}-\frac {32 \,{\mathrm e}^{6 \,{\mathrm e}} x^{6}}{46875}+\frac {16 x^{5} {\mathrm e}^{6 \,{\mathrm e}}}{78125}-\frac {64 \,{\mathrm e}^{4 \,{\mathrm e}} x^{6}}{625}+\frac {96 x^{5} {\mathrm e}^{4 \,{\mathrm e}}}{3125}-\frac {512 \,{\mathrm e}^{2 \,{\mathrm e}} x^{6}}{75}+\frac {256 x^{5} {\mathrm e}^{2 \,{\mathrm e}}}{125}+\frac {4 \,{\mathrm e}^{8 \,{\mathrm e}} x^{6} \ln \relax (x )}{390625}-\frac {x^{5} \ln \relax (x ) {\mathrm e}^{8 \,{\mathrm e}}}{390625}+\frac {64 \,{\mathrm e}^{6 \,{\mathrm e}} x^{6} \ln \relax (x )}{15625}-\frac {16 x^{5} \ln \relax (x ) {\mathrm e}^{6 \,{\mathrm e}}}{15625}+\frac {384 \,{\mathrm e}^{4 \,{\mathrm e}} x^{6} \ln \relax (x )}{625}-\frac {96 x^{5} \ln \relax (x ) {\mathrm e}^{4 \,{\mathrm e}}}{625}+\frac {1024 \,{\mathrm e}^{2 \,{\mathrm e}} x^{6} \ln \relax (x )}{25}-\frac {256 x^{5} \ln \relax (x ) {\mathrm e}^{2 \,{\mathrm e}}}{25}+\frac {{\mathrm e}^{8 \,{\mathrm e}} \left (\frac {2}{3} x^{6}-\frac {1}{5} x^{5}\right )}{390625}+\frac {{\mathrm e}^{6 \,{\mathrm e}} \left (\frac {800}{3} x^{6}-80 x^{5}\right )}{390625}+\frac {{\mathrm e}^{4 \,{\mathrm e}} \left (40000 x^{6}-12000 x^{5}\right )}{390625}+\frac {{\mathrm e}^{2 \,{\mathrm e}} \left (\frac {8000000}{3} x^{6}-800000 x^{5}\right )}{390625}\) | \(277\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 245, normalized size = 7.42 \begin {gather*} -\frac {2}{1171875} \, x^{6} {\left (e^{\left (8 \, e\right )} + 400 \, e^{\left (6 \, e\right )} + 60000 \, e^{\left (4 \, e\right )} + 4000000 \, e^{\left (2 \, e\right )} + 100000000\right )} + \frac {512}{3} \, x^{6} + \frac {1}{1953125} \, x^{5} {\left (e^{\left (8 \, e\right )} + 400 \, e^{\left (6 \, e\right )} + 60000 \, e^{\left (4 \, e\right )} + 4000000 \, e^{\left (2 \, e\right )} + 100000000\right )} - \frac {256}{5} \, x^{5} + \frac {1}{5859375} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (8 \, e\right )} + \frac {16}{234375} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (6 \, e\right )} + \frac {32}{3125} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (4 \, e\right )} + \frac {256}{375} \, {\left (10 \, x^{6} - 3 \, x^{5}\right )} e^{\left (2 \, e\right )} + \frac {1}{390625} \, {\left (400000000 \, x^{6} - 100000000 \, x^{5} - 1562500 \, x^{3} + 390625 \, x^{2} + {\left (4 \, x^{6} - x^{5}\right )} e^{\left (8 \, e\right )} + 400 \, {\left (4 \, x^{6} - x^{5}\right )} e^{\left (6 \, e\right )} + 60000 \, {\left (4 \, x^{6} - x^{5}\right )} e^{\left (4 \, e\right )} + 4000000 \, {\left (4 \, x^{6} - x^{5}\right )} e^{\left (2 \, e\right )}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.29, size = 46, normalized size = 1.39 \begin {gather*} x^2\,\ln \relax (x)-4\,x^3\,\ln \relax (x)-\frac {x^5\,\ln \relax (x)\,{\left ({\mathrm {e}}^{2\,\mathrm {e}}+100\right )}^4}{390625}+\frac {4\,x^6\,\ln \relax (x)\,{\left ({\mathrm {e}}^{2\,\mathrm {e}}+100\right )}^4}{390625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 128, normalized size = 3.88 \begin {gather*} \left (1024 x^{6} + \frac {1024 x^{6} e^{2 e}}{25} + \frac {4 x^{6} e^{8 e}}{390625} + \frac {384 x^{6} e^{4 e}}{625} + \frac {64 x^{6} e^{6 e}}{15625} - \frac {16 x^{5} e^{6 e}}{15625} - \frac {96 x^{5} e^{4 e}}{625} - \frac {x^{5} e^{8 e}}{390625} - \frac {256 x^{5} e^{2 e}}{25} - 256 x^{5} - 4 x^{3} + x^{2}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________