Optimal. Leaf size=32 \[ 2 e^{-x} \left (1+7 \left (2-\log \left (2 \left (-e+\frac {1}{5} (-1+x)+2 x\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.49, antiderivative size = 31, normalized size of antiderivative = 0.97, number of steps used = 10, number of rules used = 7, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6741, 6742, 2199, 2194, 2178, 2554, 12} \begin {gather*} 30 e^{-x}-14 e^{-x} \log \left (\frac {22 x}{5}-\frac {2}{5} (1+5 e)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (124 \left (1-\frac {75 e}{62}\right )+330 x+(14+70 e-154 x) \log \left (\frac {1}{5} (-2-10 e+22 x)\right )\right )}{1+5 e-11 x} \, dx\\ &=\int \left (-\frac {2 e^{-x} (-62+75 e-165 x)}{1+5 e-11 x}+14 e^{-x} \log \left (-\frac {2}{5} (1+5 e)+\frac {22 x}{5}\right )\right ) \, dx\\ &=-\left (2 \int \frac {e^{-x} (-62+75 e-165 x)}{1+5 e-11 x} \, dx\right )+14 \int e^{-x} \log \left (-\frac {2}{5} (1+5 e)+\frac {22 x}{5}\right ) \, dx\\ &=-14 e^{-x} \log \left (-\frac {2}{5} (1+5 e)+\frac {22 x}{5}\right )-2 \int \left (15 e^{-x}-\frac {77 e^{-x}}{1+5 e-11 x}\right ) \, dx-14 \int \frac {11 e^{-x}}{1+5 e-11 x} \, dx\\ &=-14 e^{-x} \log \left (-\frac {2}{5} (1+5 e)+\frac {22 x}{5}\right )-30 \int e^{-x} \, dx\\ &=30 e^{-x}-14 e^{-x} \log \left (-\frac {2}{5} (1+5 e)+\frac {22 x}{5}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 24, normalized size = 0.75 \begin {gather*} 2 e^{-x} \left (15-7 \log \left (-\frac {2}{5} (1+5 e-11 x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 23, normalized size = 0.72 \begin {gather*} -14 \, e^{\left (-x\right )} \log \left (\frac {22}{5} \, x - 2 \, e - \frac {2}{5}\right ) + 30 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 23, normalized size = 0.72 \begin {gather*} -14 \, e^{\left (-x\right )} \log \left (\frac {22}{5} \, x - 2 \, e - \frac {2}{5}\right ) + 30 \, e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 20, normalized size = 0.62
method | result | size |
norman | \(\left (30-14 \ln \left (-2 \,{\mathrm e}+\frac {22 x}{5}-\frac {2}{5}\right )\right ) {\mathrm e}^{-x}\) | \(20\) |
risch | \(-14 \,{\mathrm e}^{-x} \ln \left (-2 \,{\mathrm e}+\frac {22 x}{5}-\frac {2}{5}\right )+30 \,{\mathrm e}^{-x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {150}{11} \, e^{\left (-\frac {5}{11} \, e + \frac {10}{11}\right )} E_{1}\left (x - \frac {5}{11} \, e - \frac {1}{11}\right ) + \frac {124}{11} \, e^{\left (-\frac {5}{11} \, e - \frac {1}{11}\right )} E_{1}\left (x - \frac {5}{11} \, e - \frac {1}{11}\right ) + \frac {2 \, {\left (11 \, x {\left (7 \, \log \relax (5) - 7 \, \log \relax (2) + 15\right )} - 7 \, {\left (11 \, x - 5 \, e - 1\right )} \log \left (11 \, x - 5 \, e - 1\right )\right )} e^{\left (-x\right )}}{11 \, x - 5 \, e - 1} - 2 \, \int -\frac {{\left (77 \, {\left (5 \, {\left (\log \relax (5) - \log \relax (2)\right )} e + \log \relax (5) - \log \relax (2) + 11\right )} x - 175 \, {\left (\log \relax (5) - \log \relax (2)\right )} e^{2} + 5 \, {\left (63 \, \log \relax (5) - 63 \, \log \relax (2) + 88\right )} e + 70 \, \log \relax (5) - 70 \, \log \relax (2) + 88\right )} e^{\left (-x\right )}}{121 \, x^{2} - 22 \, x {\left (5 \, e + 1\right )} + 25 \, e^{2} + 10 \, e + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 20, normalized size = 0.62 \begin {gather*} -2\,{\mathrm {e}}^{-x}\,\left (7\,\ln \left (\frac {22\,x}{5}-2\,\mathrm {e}-\frac {2}{5}\right )-15\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 20, normalized size = 0.62 \begin {gather*} \left (30 - 14 \log {\left (\frac {22 x}{5} - 2 e - \frac {2}{5} \right )}\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________