Optimal. Leaf size=21 \[ \frac {e^{-2 x^3+2 (10+x)^2}}{\log ^2(\log (x))} \]
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 52, normalized size of antiderivative = 2.48, number of steps used = 1, number of rules used = 1, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2288} \begin {gather*} \frac {e^{-2 x^3+2 x^2+40 x+200} \left (-3 x^3+2 x^2+20 x\right )}{x \left (-3 x^2+2 x+20\right ) \log ^2(\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{200+40 x+2 x^2-2 x^3} \left (20 x+2 x^2-3 x^3\right )}{x \left (20+2 x-3 x^2\right ) \log ^2(\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 1.10 \begin {gather*} \frac {e^{200+40 x+2 x^2-2 x^3}}{\log ^2(\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 22, normalized size = 1.05 \begin {gather*} e^{\left (-2 \, x^{3} + 2 \, x^{2} + 40 \, x - 2 \, \log \left (\log \left (\log \relax (x)\right )\right ) + 200\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 22, normalized size = 1.05 \begin {gather*} e^{\left (-2 \, x^{3} + 2 \, x^{2} + 40 \, x - 2 \, \log \left (\log \left (\log \relax (x)\right )\right ) + 200\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.10
method | result | size |
risch | \(\frac {{\mathrm e}^{-2 x^{3}+2 x^{2}+40 x +200}}{\ln \left (\ln \relax (x )\right )^{2}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 22, normalized size = 1.05 \begin {gather*} \frac {e^{\left (-2 \, x^{3} + 2 \, x^{2} + 40 \, x + 200\right )}}{\log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.08, size = 24, normalized size = 1.14 \begin {gather*} \frac {{\mathrm {e}}^{40\,x}\,{\mathrm {e}}^{200}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{-2\,x^3}}{{\ln \left (\ln \relax (x)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 22, normalized size = 1.05 \begin {gather*} \frac {e^{- 2 x^{3} + 2 x^{2} + 40 x + 200}}{\log {\left (\log {\relax (x )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________