Optimal. Leaf size=18 \[ 2 x+\frac {-3-x}{x-\log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {27, 1850} \begin {gather*} 2 x-\frac {3+\log (4)}{x-\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+2 x^2+(1-4 x) \log (4)+2 \log ^2(4)}{(x-\log (4))^2} \, dx\\ &=\int \left (2+\frac {3+\log (4)}{(x-\log (4))^2}\right ) \, dx\\ &=2 x-\frac {3+\log (4)}{x-\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.33 \begin {gather*} \frac {-3-\log (4)}{x-\log (4)}+2 (x-\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 25, normalized size = 1.39 \begin {gather*} \frac {2 \, x^{2} - 2 \, {\left (2 \, x + 1\right )} \log \relax (2) - 3}{x - 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 20, normalized size = 1.11 \begin {gather*} 2 \, x - \frac {2 \, \log \relax (2) + 3}{x - 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 21, normalized size = 1.17
method | result | size |
default | \(2 x -\frac {2 \ln \relax (2)+3}{x -2 \ln \relax (2)}\) | \(21\) |
risch | \(2 x +\frac {\ln \relax (2)}{\ln \relax (2)-\frac {x}{2}}+\frac {3}{2 \left (\ln \relax (2)-\frac {x}{2}\right )}\) | \(26\) |
gosper | \(\frac {-2 x^{2}+3+8 \ln \relax (2)^{2}+2 \ln \relax (2)}{2 \ln \relax (2)-x}\) | \(29\) |
norman | \(\frac {-2 x^{2}+3+8 \ln \relax (2)^{2}+2 \ln \relax (2)}{2 \ln \relax (2)-x}\) | \(29\) |
meijerg | \(\frac {2 x}{1-\frac {x}{2 \ln \relax (2)}}+\frac {3 x}{4 \ln \relax (2)^{2} \left (1-\frac {x}{2 \ln \relax (2)}\right )}+\frac {x}{2 \left (1-\frac {x}{2 \ln \relax (2)}\right ) \ln \relax (2)}-8 \ln \relax (2) \left (\frac {x}{2 \left (1-\frac {x}{2 \ln \relax (2)}\right ) \ln \relax (2)}+\ln \left (1-\frac {x}{2 \ln \relax (2)}\right )\right )-4 \ln \relax (2) \left (-\frac {x \left (-\frac {3 x}{2 \ln \relax (2)}+6\right )}{6 \ln \relax (2) \left (1-\frac {x}{2 \ln \relax (2)}\right )}-2 \ln \left (1-\frac {x}{2 \ln \relax (2)}\right )\right )\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 20, normalized size = 1.11 \begin {gather*} 2 \, x - \frac {2 \, \log \relax (2) + 3}{x - 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.06 \begin {gather*} \int \frac {8\,{\ln \relax (2)}^2-2\,\ln \relax (2)\,\left (4\,x-1\right )+2\,x^2+3}{x^2-4\,\ln \relax (2)\,x+4\,{\ln \relax (2)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.94 \begin {gather*} 2 x + \frac {-3 - 2 \log {\relax (2 )}}{x - 2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________