3.34.52 \(\int \frac {1}{3} (-7-e+3 e^2+6 x-9 x^2) \, dx\)

Optimal. Leaf size=29 \[ 2 e^4-x \left (1-e^2+\frac {4+e}{3}-x+x^2\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 22, normalized size of antiderivative = 0.76, number of steps used = 2, number of rules used = 1, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {12} \begin {gather*} -x^3+x^2-\frac {1}{3} \left (7+e-3 e^2\right ) x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-7 - E + 3*E^2 + 6*x - 9*x^2)/3,x]

[Out]

-1/3*((7 + E - 3*E^2)*x) + x^2 - x^3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (-7-e+3 e^2+6 x-9 x^2\right ) \, dx\\ &=-\frac {1}{3} \left (7+e-3 e^2\right ) x+x^2-x^3\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 25, normalized size = 0.86 \begin {gather*} -\frac {7 x}{3}-\frac {e x}{3}+e^2 x+x^2-x^3 \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-7 - E + 3*E^2 + 6*x - 9*x^2)/3,x]

[Out]

(-7*x)/3 - (E*x)/3 + E^2*x + x^2 - x^3

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 21, normalized size = 0.72 \begin {gather*} -x^{3} + x^{2} + x e^{2} - \frac {1}{3} \, x e - \frac {7}{3} \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2)-1/3*exp(1)-3*x^2+2*x-7/3,x, algorithm="fricas")

[Out]

-x^3 + x^2 + x*e^2 - 1/3*x*e - 7/3*x

________________________________________________________________________________________

giac [A]  time = 0.17, size = 21, normalized size = 0.72 \begin {gather*} -x^{3} + x^{2} + x e^{2} - \frac {1}{3} \, x e - \frac {7}{3} \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2)-1/3*exp(1)-3*x^2+2*x-7/3,x, algorithm="giac")

[Out]

-x^3 + x^2 + x*e^2 - 1/3*x*e - 7/3*x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 20, normalized size = 0.69




method result size



norman \(x^{2}+\left ({\mathrm e}^{2}-\frac {{\mathrm e}}{3}-\frac {7}{3}\right ) x -x^{3}\) \(20\)
gosper \(\frac {x \left (-3 x^{2}+3 \,{\mathrm e}^{2}-{\mathrm e}+3 x -7\right )}{3}\) \(22\)
default \({\mathrm e}^{2} x -\frac {x \,{\mathrm e}}{3}-x^{3}+x^{2}-\frac {7 x}{3}\) \(22\)
risch \({\mathrm e}^{2} x -\frac {x \,{\mathrm e}}{3}-x^{3}+x^{2}-\frac {7 x}{3}\) \(22\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(2)-1/3*exp(1)-3*x^2+2*x-7/3,x,method=_RETURNVERBOSE)

[Out]

x^2+(exp(2)-1/3*exp(1)-7/3)*x-x^3

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 21, normalized size = 0.72 \begin {gather*} -x^{3} + x^{2} + x e^{2} - \frac {1}{3} \, x e - \frac {7}{3} \, x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2)-1/3*exp(1)-3*x^2+2*x-7/3,x, algorithm="maxima")

[Out]

-x^3 + x^2 + x*e^2 - 1/3*x*e - 7/3*x

________________________________________________________________________________________

mupad [B]  time = 1.89, size = 22, normalized size = 0.76 \begin {gather*} -x^3+x^2+\left ({\mathrm {e}}^2-\frac {\mathrm {e}}{3}-\frac {7}{3}\right )\,x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*x - exp(1)/3 + exp(2) - 3*x^2 - 7/3,x)

[Out]

x^2 - x*(exp(1)/3 - exp(2) + 7/3) - x^3

________________________________________________________________________________________

sympy [A]  time = 0.06, size = 19, normalized size = 0.66 \begin {gather*} - x^{3} + x^{2} + x \left (- \frac {7}{3} - \frac {e}{3} + e^{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2)-1/3*exp(1)-3*x**2+2*x-7/3,x)

[Out]

-x**3 + x**2 + x*(-7/3 - E/3 + exp(2))

________________________________________________________________________________________