Optimal. Leaf size=30 \[ 2+e^{e^{e^{x^2 \left (-\frac {4 e^6}{1-x}+x\right )}} x^2} \]
________________________________________________________________________________________
Rubi [F] time = 50.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2\right ) \left (2 x-4 x^2+2 x^3+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}} \left (3 x^4-6 x^5+3 x^6+e^6 \left (-8 x^3+4 x^4\right )\right )\right )}{1-2 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2\right ) \left (2 x-4 x^2+2 x^3+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}} \left (3 x^4-6 x^5+3 x^6+e^6 \left (-8 x^3+4 x^4\right )\right )\right )}{(-1+x)^2} \, dx\\ &=\int \left (2 \exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2\right ) x+\frac {\exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) x^3 \left (-8 e^6+\left (3+4 e^6\right ) x-6 x^2+3 x^3\right )}{(1-x)^2}\right ) \, dx\\ &=2 \int \exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2\right ) x \, dx+\int \frac {\exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) x^3 \left (-8 e^6+\left (3+4 e^6\right ) x-6 x^2+3 x^3\right )}{(1-x)^2} \, dx\\ &=2 \int \exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2\right ) x \, dx+\int \left (-4 \exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right )-\frac {4 \exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right )}{(-1+x)^2}-\frac {8 \exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right )}{-1+x}+4 \exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) x^2+3 \exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) x^4\right ) \, dx\\ &=2 \int \exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2\right ) x \, dx+3 \int \exp \left (e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) x^4 \, dx-4 \int \exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) \, dx-4 \int \frac {\exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right )}{(-1+x)^2} \, dx+4 \int \exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right ) x^2 \, dx-8 \int \frac {\exp \left (6+e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}+e^{e^{\frac {4 e^6 x^2-x^3+x^4}{-1+x}}} x^2+\frac {4 e^6 x^2}{-1+x}+x^3\right )}{-1+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 26, normalized size = 0.87 \begin {gather*} e^{e^{e^{x^2 \left (\frac {4 e^6}{-1+x}+x\right )}} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 29, normalized size = 0.97 \begin {gather*} e^{\left (x^{2} e^{\left (e^{\left (\frac {x^{4} - x^{3} + 4 \, x^{2} e^{6}}{x - 1}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} - 4 \, x^{2} + {\left (3 \, x^{6} - 6 \, x^{5} + 3 \, x^{4} + 4 \, {\left (x^{4} - 2 \, x^{3}\right )} e^{6}\right )} e^{\left (\frac {x^{4} - x^{3} + 4 \, x^{2} e^{6}}{x - 1}\right )} + 2 \, x\right )} e^{\left (x^{2} e^{\left (e^{\left (\frac {x^{4} - x^{3} + 4 \, x^{2} e^{6}}{x - 1}\right )}\right )} + e^{\left (\frac {x^{4} - x^{3} + 4 \, x^{2} e^{6}}{x - 1}\right )}\right )}}{x^{2} - 2 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 28, normalized size = 0.93
method | result | size |
risch | \({\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{\frac {x^{2} \left (x^{2}+4 \,{\mathrm e}^{6}-x \right )}{x -1}}}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.24, size = 29, normalized size = 0.97 \begin {gather*} e^{\left (x^{2} e^{\left (e^{\left (x^{3} + 4 \, x e^{6} + \frac {4 \, e^{6}}{x - 1} + 4 \, e^{6}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.40, size = 41, normalized size = 1.37 \begin {gather*} {\mathrm {e}}^{x^2\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^6}{x-1}}\,{\mathrm {e}}^{\frac {x^4}{x-1}}\,{\mathrm {e}}^{-\frac {x^3}{x-1}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________