Optimal. Leaf size=26 \[ e^{\left (4+2 x-\log (3)-\frac {\log (x)}{x \log (5+x)}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 141.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {\log ^2(x)+\left (-8 x-4 x^2+2 x \log (3)\right ) \log (x) \log (5+x)+\left (16 x^2+16 x^3+4 x^4+\left (-8 x^2-4 x^3\right ) \log (3)+x^2 \log ^2(3)\right ) \log ^2(5+x)}{x^2 \log ^2(5+x)}\right ) \left (-2 x \log ^2(x)+\left (\left (10+2 x+8 x^2+4 x^3-2 x^2 \log (3)\right ) \log (x)+(-10-2 x) \log ^2(x)\right ) \log (5+x)+\left (-40 x-28 x^2-4 x^3+\left (10 x+2 x^2\right ) \log (3)+\left (40 x+8 x^2+\left (-10 x-2 x^2\right ) \log (3)\right ) \log (x)\right ) \log ^2(5+x)+\left (80 x^3+56 x^4+8 x^5+\left (-20 x^3-4 x^4\right ) \log (3)\right ) \log ^3(5+x)\right )}{\left (5 x^3+x^4\right ) \log ^3(5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {\log ^2(x)+\left (-8 x-4 x^2+2 x \log (3)\right ) \log (x) \log (5+x)+\left (16 x^2+16 x^3+4 x^4+\left (-8 x^2-4 x^3\right ) \log (3)+x^2 \log ^2(3)\right ) \log ^2(5+x)}{x^2 \log ^2(5+x)}\right ) \left (-2 x \log ^2(x)+\left (\left (10+2 x+8 x^2+4 x^3-2 x^2 \log (3)\right ) \log (x)+(-10-2 x) \log ^2(x)\right ) \log (5+x)+\left (-40 x-28 x^2-4 x^3+\left (10 x+2 x^2\right ) \log (3)+\left (40 x+8 x^2+\left (-10 x-2 x^2\right ) \log (3)\right ) \log (x)\right ) \log ^2(5+x)+\left (80 x^3+56 x^4+8 x^5+\left (-20 x^3-4 x^4\right ) \log (3)\right ) \log ^3(5+x)\right )}{x^3 (5+x) \log ^3(5+x)} \, dx\\ &=\int \frac {2\ 3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} (\log (x)+x (-4-2 x+\log (3)) \log (5+x)) \left (-\left ((5+x) \log (5+x) \left (-1+2 x^2 \log (5+x)\right )\right )-\log (x) (x+(5+x) \log (5+x))\right )}{(5+x) \log ^3(5+x)} \, dx\\ &=2 \int \frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} (\log (x)+x (-4-2 x+\log (3)) \log (5+x)) \left (-\left ((5+x) \log (5+x) \left (-1+2 x^2 \log (5+x)\right )\right )-\log (x) (x+(5+x) \log (5+x))\right )}{(5+x) \log ^3(5+x)} \, dx\\ &=2 \int \left (2\ 3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{3+\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} (4+2 x-\log (3))-\frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{1+\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} \log ^2(x)}{(5+x) \log ^3(5+x)}+\frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} \log (x) \left (5+x+2 x^3+4 x^2 \left (1-\frac {\log (3)}{4}\right )-5 \log (x)-x \log (x)\right )}{(5+x) \log ^2(5+x)}+\frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{1+\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} \left (-2 x-4 \left (1-\frac {\log (3)}{4}\right )+4 \left (1-\frac {\log (3)}{4}\right ) \log (x)\right )}{\log (5+x)}\right ) \, dx\\ &=-\left (2 \int \frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{1+\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} \log ^2(x)}{(5+x) \log ^3(5+x)} \, dx\right )+2 \int \frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} \log (x) \left (5+x+2 x^3+4 x^2 \left (1-\frac {\log (3)}{4}\right )-5 \log (x)-x \log (x)\right )}{(5+x) \log ^2(5+x)} \, dx+2 \int \frac {3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{1+\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} \left (-2 x-4 \left (1-\frac {\log (3)}{4}\right )+4 \left (1-\frac {\log (3)}{4}\right ) \log (x)\right )}{\log (5+x)} \, dx+4 \int 3^{-8-4 x} \exp \left (16 x+4 x^2+16 \left (1+\frac {\log ^2(3)}{16}\right )+\frac {\log ^2(x)}{x^2 \log ^2(5+x)}\right ) x^{3+\frac {-4 x-8 \left (1-\frac {\log (3)}{4}\right )-3 x \log (5+x)}{x \log (5+x)}} (4+2 x-\log (3)) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.53, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {\log ^2(x)+\left (-8 x-4 x^2+2 x \log (3)\right ) \log (x) \log (5+x)+\left (16 x^2+16 x^3+4 x^4+\left (-8 x^2-4 x^3\right ) \log (3)+x^2 \log ^2(3)\right ) \log ^2(5+x)}{x^2 \log ^2(5+x)}} \left (-2 x \log ^2(x)+\left (\left (10+2 x+8 x^2+4 x^3-2 x^2 \log (3)\right ) \log (x)+(-10-2 x) \log ^2(x)\right ) \log (5+x)+\left (-40 x-28 x^2-4 x^3+\left (10 x+2 x^2\right ) \log (3)+\left (40 x+8 x^2+\left (-10 x-2 x^2\right ) \log (3)\right ) \log (x)\right ) \log ^2(5+x)+\left (80 x^3+56 x^4+8 x^5+\left (-20 x^3-4 x^4\right ) \log (3)\right ) \log ^3(5+x)\right )}{\left (5 x^3+x^4\right ) \log ^3(5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 82, normalized size = 3.15 \begin {gather*} e^{\left (\frac {{\left (4 \, x^{4} + x^{2} \log \relax (3)^{2} + 16 \, x^{3} + 16 \, x^{2} - 4 \, {\left (x^{3} + 2 \, x^{2}\right )} \log \relax (3)\right )} \log \left (x + 5\right )^{2} - 2 \, {\left (2 \, x^{2} - x \log \relax (3) + 4 \, x\right )} \log \left (x + 5\right ) \log \relax (x) + \log \relax (x)^{2}}{x^{2} \log \left (x + 5\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.65, size = 76, normalized size = 2.92 \begin {gather*} e^{\left (4 \, x^{2} - 4 \, x \log \relax (3) + \log \relax (3)^{2} + 16 \, x + \frac {2 \, \log \relax (3) \log \relax (x)}{x \log \left (x + 5\right )} - \frac {4 \, \log \relax (x)}{\log \left (x + 5\right )} - \frac {8 \, \log \relax (x)}{x \log \left (x + 5\right )} + \frac {\log \relax (x)^{2}}{x^{2} \log \left (x + 5\right )^{2}} - 8 \, \log \relax (3) + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 41, normalized size = 1.58
method | result | size |
risch | \({\mathrm e}^{\frac {\left (\ln \left (5+x \right ) \ln \relax (3) x -2 x^{2} \ln \left (5+x \right )-4 x \ln \left (5+x \right )+\ln \relax (x )\right )^{2}}{x^{2} \ln \left (5+x \right )^{2}}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.13, size = 74, normalized size = 2.85 \begin {gather*} \frac {1}{6561} \, e^{\left (4 \, x^{2} - 4 \, x \log \relax (3) + \log \relax (3)^{2} + 16 \, x + \frac {2 \, \log \relax (3) \log \relax (x)}{x \log \left (x + 5\right )} - \frac {4 \, \log \relax (x)}{\log \left (x + 5\right )} - \frac {8 \, \log \relax (x)}{x \log \left (x + 5\right )} + \frac {\log \relax (x)^{2}}{x^{2} \log \left (x + 5\right )^{2}} + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.77, size = 83, normalized size = 3.19 \begin {gather*} \frac {x^{\frac {2\,\ln \relax (3)}{x\,\ln \left (x+5\right )}}\,{\mathrm {e}}^{{\ln \relax (3)}^2}\,{\mathrm {e}}^{16\,x}\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{\frac {{\ln \relax (x)}^2}{x^2\,{\ln \left (x+5\right )}^2}}\,{\mathrm {e}}^{4\,x^2}}{6561\,3^{4\,x}\,x^{\frac {8}{x\,\ln \left (x+5\right )}}\,x^{\frac {4}{\ln \left (x+5\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.30, size = 85, normalized size = 3.27 \begin {gather*} e^{\frac {\left (- 4 x^{2} - 8 x + 2 x \log {\relax (3 )}\right ) \log {\relax (x )} \log {\left (x + 5 \right )} + \left (4 x^{4} + 16 x^{3} + x^{2} \log {\relax (3 )}^{2} + 16 x^{2} + \left (- 4 x^{3} - 8 x^{2}\right ) \log {\relax (3 )}\right ) \log {\left (x + 5 \right )}^{2} + \log {\relax (x )}^{2}}{x^{2} \log {\left (x + 5 \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________