Optimal. Leaf size=19 \[ 6 \left (-4-e^x+e^{4 (5+x)^2}\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.04, antiderivative size = 43, normalized size of antiderivative = 2.26, number of steps used = 4, number of rules used = 3, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {2176, 2194, 2288} \begin {gather*} \frac {6 e^{4 x^2+40 x+100} \left (x^2+5 x\right )}{x+5}-24 x+6 e^x-6 e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-24 x+\int e^x (-6-6 x) \, dx+\int e^{100+40 x+4 x^2} \left (6+240 x+48 x^2\right ) \, dx\\ &=-24 x-6 e^x (1+x)+\frac {6 e^{100+40 x+4 x^2} \left (5 x+x^2\right )}{5+x}+6 \int e^x \, dx\\ &=6 e^x-24 x-6 e^x (1+x)+\frac {6 e^{100+40 x+4 x^2} \left (5 x+x^2\right )}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 1.16 \begin {gather*} -24 x-6 e^x x+6 e^{4 (5+x)^2} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 23, normalized size = 1.21 \begin {gather*} 6 \, x e^{\left (4 \, x^{2} + 40 \, x + 100\right )} - 6 \, x e^{x} - 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 23, normalized size = 1.21 \begin {gather*} 6 \, x e^{\left (4 \, x^{2} + 40 \, x + 100\right )} - 6 \, x e^{x} - 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 1.11
method | result | size |
risch | \(-24 x -6 \,{\mathrm e}^{x} x +6 \,{\mathrm e}^{4 \left (5+x \right )^{2}} x\) | \(21\) |
default | \(-24 x -6 \,{\mathrm e}^{x} x +6 \,{\mathrm e}^{4 x^{2}+40 x +100} x\) | \(24\) |
norman | \(-24 x -6 \,{\mathrm e}^{x} x +6 \,{\mathrm e}^{4 x^{2}+40 x +100} x\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 29, normalized size = 1.53 \begin {gather*} 6 \, x e^{\left (4 \, x^{2} + 40 \, x + 100\right )} - 6 \, {\left (x - 1\right )} e^{x} - 24 \, x - 6 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 20, normalized size = 1.05 \begin {gather*} -6\,x\,\left ({\mathrm {e}}^x-{\mathrm {e}}^{4\,x^2+40\,x+100}+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 1.26 \begin {gather*} - 6 x e^{x} + 6 x e^{4 x^{2} + 40 x + 100} - 24 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________