Optimal. Leaf size=27 \[ -\frac {2 \log (10)}{(-4+x) x}+\log ^2\left (2 e^{\frac {x^2}{25}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 41, normalized size of antiderivative = 1.52, number of steps used = 9, number of rules used = 7, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.123, Rules used = {1594, 27, 12, 6688, 74, 2551, 30} \begin {gather*} -\frac {x^4}{625}+\frac {2}{25} x^2 \log \left (2 e^{\frac {x^2}{25}}\right )+\frac {2 \log (10)}{(4-x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 30
Rule 74
Rule 1594
Rule 2551
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-200+100 x) \log (10)+\left (64 x^3-32 x^4+4 x^5\right ) \log \left (2 e^{\frac {x^2}{25}}\right )}{x^2 \left (400-200 x+25 x^2\right )} \, dx\\ &=\int \frac {(-200+100 x) \log (10)+\left (64 x^3-32 x^4+4 x^5\right ) \log \left (2 e^{\frac {x^2}{25}}\right )}{25 (-4+x)^2 x^2} \, dx\\ &=\frac {1}{25} \int \frac {(-200+100 x) \log (10)+\left (64 x^3-32 x^4+4 x^5\right ) \log \left (2 e^{\frac {x^2}{25}}\right )}{(-4+x)^2 x^2} \, dx\\ &=\frac {1}{25} \int \left (\frac {100 (-2+x) \log (10)}{(-4+x)^2 x^2}+4 x \log \left (2 e^{\frac {x^2}{25}}\right )\right ) \, dx\\ &=\frac {4}{25} \int x \log \left (2 e^{\frac {x^2}{25}}\right ) \, dx+(4 \log (10)) \int \frac {-2+x}{(-4+x)^2 x^2} \, dx\\ &=\frac {2 \log (10)}{(4-x) x}+\frac {2}{25} x^2 \log \left (2 e^{\frac {x^2}{25}}\right )-\frac {2}{25} \int \frac {2 x^3}{25} \, dx\\ &=\frac {2 \log (10)}{(4-x) x}+\frac {2}{25} x^2 \log \left (2 e^{\frac {x^2}{25}}\right )-\frac {4 \int x^3 \, dx}{625}\\ &=-\frac {x^4}{625}+\frac {2 \log (10)}{(4-x) x}+\frac {2}{25} x^2 \log \left (2 e^{\frac {x^2}{25}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 47, normalized size = 1.74 \begin {gather*} -\frac {x^4}{625}-\frac {\log (10)}{2 (-4+x)}+\frac {\log (10)}{2 x}+\frac {2}{25} x^2 \log \left (2 e^{\frac {x^2}{25}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 37, normalized size = 1.37 \begin {gather*} \frac {x^{6} - 4 \, x^{5} + 50 \, {\left (x^{4} - 4 \, x^{3}\right )} \log \relax (2) - 1250 \, \log \left (10\right )}{625 \, {\left (x^{2} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 26, normalized size = 0.96 \begin {gather*} \frac {1}{625} \, x^{4} + \frac {2}{25} \, x^{2} \log \relax (2) - \frac {2 \, \log \left (10\right )}{x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.07
method | result | size |
default | \(\ln \left (2 \,{\mathrm e}^{\frac {x^{2}}{25}}\right )^{2}+\frac {\ln \left (10\right )}{2 x}-\frac {\ln \left (10\right )}{2 \left (x -4\right )}\) | \(29\) |
risch | \(\frac {2 x^{2} \ln \left ({\mathrm e}^{\frac {x^{2}}{25}}\right )}{25}-\frac {x^{6}-50 x^{4} \ln \relax (2)-4 x^{5}+200 x^{3} \ln \relax (2)+1250 \ln \relax (5)+1250 \ln \relax (2)}{625 \left (x -4\right ) x}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 170, normalized size = 6.30 \begin {gather*} -\frac {1}{625} \, x^{4} + \frac {1}{4} \, {\left (\frac {4 \, {\left (x - 2\right )}}{x^{2} - 4 \, x} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \left (10\right ) - \frac {1}{4} \, {\left (\frac {4}{x - 4} + \log \left (x - 4\right ) - \log \relax (x)\right )} \log \left (10\right ) - \frac {64}{625} \, {\left (3 \, x^{2} - 80\right )} \log \left (x - 4\right ) + \frac {256}{625} \, {\left (x^{2} - 32\right )} \log \left (x - 4\right ) - \frac {64}{625} \, {\left (x^{2} - 48\right )} \log \left (x - 4\right ) + \frac {2}{25} \, {\left (x^{2} + 16 \, x - \frac {128}{x - 4} + 96 \, \log \left (x - 4\right )\right )} \log \left (2 \, e^{\left (\frac {1}{25} \, x^{2}\right )}\right ) - \frac {32}{25} \, {\left (x - \frac {16}{x - 4} + 8 \, \log \left (x - 4\right )\right )} \log \left (2 \, e^{\left (\frac {1}{25} \, x^{2}\right )}\right ) - \frac {64}{25} \, {\left (\frac {4}{x - 4} - \log \left (x - 4\right )\right )} \log \left (2 \, e^{\left (\frac {1}{25} \, x^{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 25, normalized size = 0.93 \begin {gather*} \frac {2\,x^2\,\ln \relax (2)}{25}+\frac {x^4}{625}-\frac {2\,\ln \left (10\right )}{x\,\left (x-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 26, normalized size = 0.96 \begin {gather*} \frac {x^{4}}{625} + \frac {2 x^{2} \log {\relax (2 )}}{25} - \frac {2 \log {\left (10 \right )}}{x^{2} - 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________