Optimal. Leaf size=23 \[ e^{x+e^{-3+2 x} x^2 \log \left (e^4+64 x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.17, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6688, 2288} \begin {gather*} e^x \left (64 x+e^4\right )^{e^{2 x-3} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-3+x} \left (e^4+64 x\right )^{-1+e^{-3+2 x} x^2} \left (e^7+64 e^3 x+64 e^{2 x} x^2+2 e^{2 x} x (1+x) \left (e^4+64 x\right ) \log \left (e^4+64 x\right )\right ) \, dx\\ &=e^x \left (e^4+64 x\right )^{e^{-3+2 x} x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 1.00 \begin {gather*} e^x \left (e^4+64 x\right )^{e^{-3+2 x} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 24, normalized size = 1.04 \begin {gather*} e^{\left ({\left (x^{2} e^{\left (2 \, x\right )} \log \left (64 \, x + e^{4}\right ) + x e^{3}\right )} e^{\left (-3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (64 \, x^{2} e^{\left (2 \, x\right )} + 2 \, {\left (64 \, x^{3} + 64 \, x^{2} + {\left (x^{2} + x\right )} e^{4}\right )} e^{\left (2 \, x\right )} \log \left (64 \, x + e^{4}\right ) + 64 \, x e^{3} + e^{7}\right )} e^{\left ({\left (x^{2} e^{\left (2 \, x\right )} \log \left (64 \, x + e^{4}\right ) + x e^{3}\right )} e^{\left (-3\right )}\right )}}{64 \, x e^{3} + e^{7}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 21, normalized size = 0.91
method | result | size |
risch | \(\left ({\mathrm e}^{4}+64 x \right )^{x^{2} {\mathrm e}^{2 x -3}} {\mathrm e}^{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 20, normalized size = 0.87 \begin {gather*} e^{\left (x^{2} e^{\left (2 \, x - 3\right )} \log \left (64 \, x + e^{4}\right ) + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.42, size = 20, normalized size = 0.87 \begin {gather*} {\mathrm {e}}^x\,{\left (64\,x+{\mathrm {e}}^4\right )}^{x^2\,{\mathrm {e}}^{2\,x-3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.04, size = 26, normalized size = 1.13 \begin {gather*} e^{\frac {x^{2} e^{2 x} \log {\left (64 x + e^{4} \right )} + x e^{3}}{e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________