Optimal. Leaf size=24 \[ \frac {(5-x) x \left (-1+x+x \left (-2 e^{4+x}+x\right )\right )}{e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 47, normalized size of antiderivative = 1.96, number of steps used = 14, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {12, 1594, 2196, 2176, 2194} \begin {gather*} -\frac {x^4}{e^4}+2 e^x x^3+\frac {4 x^3}{e^4}-10 e^x x^2+\frac {6 x^2}{e^4}-\frac {5 x}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-5+12 x+12 x^2-4 x^3+e^{4+x} \left (-20 x-4 x^2+2 x^3\right )\right ) \, dx}{e^4}\\ &=-\frac {5 x}{e^4}+\frac {6 x^2}{e^4}+\frac {4 x^3}{e^4}-\frac {x^4}{e^4}+\frac {\int e^{4+x} \left (-20 x-4 x^2+2 x^3\right ) \, dx}{e^4}\\ &=-\frac {5 x}{e^4}+\frac {6 x^2}{e^4}+\frac {4 x^3}{e^4}-\frac {x^4}{e^4}+\frac {\int e^{4+x} x \left (-20-4 x+2 x^2\right ) \, dx}{e^4}\\ &=-\frac {5 x}{e^4}+\frac {6 x^2}{e^4}+\frac {4 x^3}{e^4}-\frac {x^4}{e^4}+\frac {\int \left (-20 e^{4+x} x-4 e^{4+x} x^2+2 e^{4+x} x^3\right ) \, dx}{e^4}\\ &=-\frac {5 x}{e^4}+\frac {6 x^2}{e^4}+\frac {4 x^3}{e^4}-\frac {x^4}{e^4}+\frac {2 \int e^{4+x} x^3 \, dx}{e^4}-\frac {4 \int e^{4+x} x^2 \, dx}{e^4}-\frac {20 \int e^{4+x} x \, dx}{e^4}\\ &=-\frac {5 x}{e^4}-20 e^x x+\frac {6 x^2}{e^4}-4 e^x x^2+\frac {4 x^3}{e^4}+2 e^x x^3-\frac {x^4}{e^4}-\frac {6 \int e^{4+x} x^2 \, dx}{e^4}+\frac {8 \int e^{4+x} x \, dx}{e^4}+\frac {20 \int e^{4+x} \, dx}{e^4}\\ &=20 e^x-\frac {5 x}{e^4}-12 e^x x+\frac {6 x^2}{e^4}-10 e^x x^2+\frac {4 x^3}{e^4}+2 e^x x^3-\frac {x^4}{e^4}-\frac {8 \int e^{4+x} \, dx}{e^4}+\frac {12 \int e^{4+x} x \, dx}{e^4}\\ &=12 e^x-\frac {5 x}{e^4}+\frac {6 x^2}{e^4}-10 e^x x^2+\frac {4 x^3}{e^4}+2 e^x x^3-\frac {x^4}{e^4}-\frac {12 \int e^{4+x} \, dx}{e^4}\\ &=-\frac {5 x}{e^4}+\frac {6 x^2}{e^4}-10 e^x x^2+\frac {4 x^3}{e^4}+2 e^x x^3-\frac {x^4}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 0.96 \begin {gather*} -\frac {(-5+x) x \left (-1+x-2 e^{4+x} x+x^2\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 36, normalized size = 1.50 \begin {gather*} -{\left (x^{4} - 4 \, x^{3} - 6 \, x^{2} - 2 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{\left (x + 4\right )} + 5 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 36, normalized size = 1.50 \begin {gather*} -{\left (x^{4} - 4 \, x^{3} - 6 \, x^{2} - 2 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{\left (x + 4\right )} + 5 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 42, normalized size = 1.75
method | result | size |
risch | \(-{\mathrm e}^{-4} x^{4}+4 \,{\mathrm e}^{-4} x^{3}+6 x^{2} {\mathrm e}^{-4}-5 x \,{\mathrm e}^{-4}+\left (2 x^{3}-10 x^{2}\right ) {\mathrm e}^{x}\) | \(42\) |
default | \({\mathrm e}^{-4} \left (-5 x +2 \,{\mathrm e}^{4+x} \left (4+x \right )^{3}-34 \,{\mathrm e}^{4+x} \left (4+x \right )^{2}+176 \,{\mathrm e}^{4+x} \left (4+x \right )-288 \,{\mathrm e}^{4+x}+6 x^{2}+4 x^{3}-x^{4}\right )\) | \(62\) |
norman | \(-5 x \,{\mathrm e}^{-4}+6 x^{2} {\mathrm e}^{-4}+4 \,{\mathrm e}^{-4} x^{3}-{\mathrm e}^{-4} x^{4}-10 x^{2} {\mathrm e}^{-4} {\mathrm e}^{4+x}+2 \,{\mathrm e}^{-4} x^{3} {\mathrm e}^{4+x}\) | \(62\) |
derivativedivides | \({\mathrm e}^{-4} \left (-212-53 x +2 \,{\mathrm e}^{4+x} \left (4+x \right )^{3}-34 \,{\mathrm e}^{4+x} \left (4+x \right )^{2}+176 \,{\mathrm e}^{4+x} \left (4+x \right )-288 \,{\mathrm e}^{4+x}+6 \left (4+x \right )^{2}+4 x^{3}-x^{4}\right )\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 39, normalized size = 1.62 \begin {gather*} -{\left (x^{4} - 4 \, x^{3} - 6 \, x^{2} - 2 \, {\left (x^{3} e^{4} - 5 \, x^{2} e^{4}\right )} e^{x} + 5 \, x\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.05, size = 21, normalized size = 0.88 \begin {gather*} -x\,{\mathrm {e}}^{-4}\,\left (x-5\right )\,\left (x-2\,x\,{\mathrm {e}}^{x+4}+x^2-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 48, normalized size = 2.00 \begin {gather*} - \frac {x^{4}}{e^{4}} + \frac {4 x^{3}}{e^{4}} + \frac {6 x^{2}}{e^{4}} - \frac {5 x}{e^{4}} + \frac {\left (2 x^{3} - 10 x^{2}\right ) e^{x + 4}}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________