3.33.93 \(\int \frac {1-5 x}{x} \, dx\)

Optimal. Leaf size=9 \[ 3-5 (3+x)+\log (x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 6, normalized size of antiderivative = 0.67, number of steps used = 2, number of rules used = 1, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {43} \begin {gather*} \log (x)-5 x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - 5*x)/x,x]

[Out]

-5*x + Log[x]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-5+\frac {1}{x}\right ) \, dx\\ &=-5 x+\log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 6, normalized size = 0.67 \begin {gather*} -5 x+\log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - 5*x)/x,x]

[Out]

-5*x + Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 6, normalized size = 0.67 \begin {gather*} -5 \, x + \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*x+1)/x,x, algorithm="fricas")

[Out]

-5*x + log(x)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 7, normalized size = 0.78 \begin {gather*} -5 \, x + \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*x+1)/x,x, algorithm="giac")

[Out]

-5*x + log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 7, normalized size = 0.78




method result size



default \(\ln \relax (x )-5 x\) \(7\)
norman \(\ln \relax (x )-5 x\) \(7\)
risch \(\ln \relax (x )-5 x\) \(7\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-5*x+1)/x,x,method=_RETURNVERBOSE)

[Out]

ln(x)-5*x

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 6, normalized size = 0.67 \begin {gather*} -5 \, x + \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*x+1)/x,x, algorithm="maxima")

[Out]

-5*x + log(x)

________________________________________________________________________________________

mupad [B]  time = 0.02, size = 6, normalized size = 0.67 \begin {gather*} \ln \relax (x)-5\,x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(5*x - 1)/x,x)

[Out]

log(x) - 5*x

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 5, normalized size = 0.56 \begin {gather*} - 5 x + \log {\relax (x )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-5*x+1)/x,x)

[Out]

-5*x + log(x)

________________________________________________________________________________________