Optimal. Leaf size=29 \[ 5+\frac {1}{5} e^{-x} \left (6+e^x-\frac {(-6+x)^2}{x}\right )+2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 35, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {12, 6742, 2199, 2194, 2177, 2178, 2176} \begin {gather*} -\frac {1}{5} e^{-x} x+2 x+\frac {18 e^{-x}}{5}-\frac {36 e^{-x}}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-x} \left (36+36 x-19 x^2+10 e^x x^2+x^3\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (10+\frac {e^{-x} \left (36+36 x-19 x^2+x^3\right )}{x^2}\right ) \, dx\\ &=2 x+\frac {1}{5} \int \frac {e^{-x} \left (36+36 x-19 x^2+x^3\right )}{x^2} \, dx\\ &=2 x+\frac {1}{5} \int \left (-19 e^{-x}+\frac {36 e^{-x}}{x^2}+\frac {36 e^{-x}}{x}+e^{-x} x\right ) \, dx\\ &=2 x+\frac {1}{5} \int e^{-x} x \, dx-\frac {19}{5} \int e^{-x} \, dx+\frac {36}{5} \int \frac {e^{-x}}{x^2} \, dx+\frac {36}{5} \int \frac {e^{-x}}{x} \, dx\\ &=\frac {19 e^{-x}}{5}-\frac {36 e^{-x}}{5 x}+2 x-\frac {e^{-x} x}{5}+\frac {36 \text {Ei}(-x)}{5}+\frac {1}{5} \int e^{-x} \, dx-\frac {36}{5} \int \frac {e^{-x}}{x} \, dx\\ &=\frac {18 e^{-x}}{5}-\frac {36 e^{-x}}{5 x}+2 x-\frac {e^{-x} x}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.83 \begin {gather*} \frac {1}{5} \left (e^{-x} \left (18-\frac {36}{x}-x\right )+10 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 0.90 \begin {gather*} \frac {{\left (10 \, x^{2} e^{x} - x^{2} + 18 \, x - 36\right )} e^{\left (-x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 32, normalized size = 1.10 \begin {gather*} -\frac {x^{2} e^{\left (-x\right )} - 10 \, x^{2} - 18 \, x e^{\left (-x\right )} + 36 \, e^{\left (-x\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.76
method | result | size |
risch | \(2 x -\frac {\left (x^{2}-18 x +36\right ) {\mathrm e}^{-x}}{5 x}\) | \(22\) |
norman | \(\frac {\left (-\frac {36}{5}+\frac {18 x}{5}-\frac {x^{2}}{5}+2 \,{\mathrm e}^{x} x^{2}\right ) {\mathrm e}^{-x}}{x}\) | \(26\) |
default | \(2 x -\frac {x \,{\mathrm e}^{-x}}{5}+\frac {18 \,{\mathrm e}^{-x}}{5}-\frac {36 \,{\mathrm e}^{-x}}{5 x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 30, normalized size = 1.03 \begin {gather*} -\frac {1}{5} \, {\left (x + 1\right )} e^{\left (-x\right )} + 2 \, x + \frac {36}{5} \, {\rm Ei}\left (-x\right ) + \frac {19}{5} \, e^{\left (-x\right )} - \frac {36}{5} \, \Gamma \left (-1, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 26, normalized size = 0.90 \begin {gather*} 2\,x+\frac {18\,{\mathrm {e}}^{-x}}{5}-\frac {x\,{\mathrm {e}}^{-x}}{5}-\frac {36\,{\mathrm {e}}^{-x}}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.59 \begin {gather*} 2 x + \frac {\left (- x^{2} + 18 x - 36\right ) e^{- x}}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________