Optimal. Leaf size=30 \[ -\left (\left (-1-e^{3/x}+2 \left (\left (3+e^x\right )^2-x\right )-x\right ) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 48, normalized size of antiderivative = 1.60, number of steps used = 9, number of rules used = 4, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {14, 2176, 2194, 2288} \begin {gather*} 3 x^2+e^{3/x} x-17 x+12 e^x+e^{2 x}-12 e^x (x+1)-e^{2 x} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-12 e^x (1+x)-2 e^{2 x} (1+2 x)+\frac {-3 e^{3/x}-17 x+e^{3/x} x+6 x^2}{x}\right ) \, dx\\ &=-\left (2 \int e^{2 x} (1+2 x) \, dx\right )-12 \int e^x (1+x) \, dx+\int \frac {-3 e^{3/x}-17 x+e^{3/x} x+6 x^2}{x} \, dx\\ &=-12 e^x (1+x)-e^{2 x} (1+2 x)+2 \int e^{2 x} \, dx+12 \int e^x \, dx+\int \left (-17+\frac {e^{3/x} (-3+x)}{x}+6 x\right ) \, dx\\ &=12 e^x+e^{2 x}-17 x+3 x^2-12 e^x (1+x)-e^{2 x} (1+2 x)+\int \frac {e^{3/x} (-3+x)}{x} \, dx\\ &=12 e^x+e^{2 x}-17 x+e^{3/x} x+3 x^2-12 e^x (1+x)-e^{2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.07 \begin {gather*} -17 x+e^{3/x} x-12 e^x x-2 e^{2 x} x+3 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 29, normalized size = 0.97 \begin {gather*} 3 \, x^{2} - 2 \, x e^{\left (2 \, x\right )} - 12 \, x e^{x} + x e^{\frac {3}{x}} - 17 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 29, normalized size = 0.97 \begin {gather*} 3 \, x^{2} - 2 \, x e^{\left (2 \, x\right )} - 12 \, x e^{x} + x e^{\frac {3}{x}} - 17 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.00
method | result | size |
default | \(x \,{\mathrm e}^{\frac {3}{x}}-17 x +3 x^{2}-2 x \,{\mathrm e}^{2 x}-12 \,{\mathrm e}^{x} x\) | \(30\) |
norman | \(x \,{\mathrm e}^{\frac {3}{x}}-17 x +3 x^{2}-2 x \,{\mathrm e}^{2 x}-12 \,{\mathrm e}^{x} x\) | \(30\) |
risch | \(x \,{\mathrm e}^{\frac {3}{x}}-17 x +3 x^{2}-2 x \,{\mathrm e}^{2 x}-12 \,{\mathrm e}^{x} x\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 54, normalized size = 1.80 \begin {gather*} 3 \, x^{2} - {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - 12 \, {\left (x - 1\right )} e^{x} - 17 \, x + 3 \, {\rm Ei}\left (\frac {3}{x}\right ) - e^{\left (2 \, x\right )} - 12 \, e^{x} - 3 \, \Gamma \left (-1, -\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.96, size = 26, normalized size = 0.87 \begin {gather*} -x\,\left (2\,{\mathrm {e}}^{2\,x}-3\,x-{\mathrm {e}}^{3/x}+12\,{\mathrm {e}}^x+17\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 29, normalized size = 0.97 \begin {gather*} 3 x^{2} + x e^{\frac {3}{x}} - 2 x e^{2 x} - 12 x e^{x} - 17 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________