Optimal. Leaf size=32 \[ \frac {4 x^2}{-x (3+x)+\log \left (e^{7/x} \left (5-x^2\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-140+88 x^2-16 x^3-12 x^4+\left (-40 x+8 x^3\right ) \log \left (e^{7/x} \left (25-10 x^2+x^4\right )\right )}{-45 x^2-30 x^3+4 x^4+6 x^5+x^6+\left (30 x+10 x^2-6 x^3-2 x^4\right ) \log \left (e^{7/x} \left (25-10 x^2+x^4\right )\right )+\left (-5+x^2\right ) \log ^2\left (e^{7/x} \left (25-10 x^2+x^4\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (35-22 x^2+4 x^3+3 x^4-2 x \left (-5+x^2\right ) \log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )}{\left (5-x^2\right ) \left (x (3+x)-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx\\ &=4 \int \frac {35-22 x^2+4 x^3+3 x^4-2 x \left (-5+x^2\right ) \log \left (e^{7/x} \left (-5+x^2\right )^2\right )}{\left (5-x^2\right ) \left (x (3+x)-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx\\ &=4 \int \left (\frac {-35-8 x^2-14 x^3+3 x^4+2 x^5}{\left (-5+x^2\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}-\frac {2 x}{3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )}\right ) \, dx\\ &=4 \int \frac {-35-8 x^2-14 x^3+3 x^4+2 x^5}{\left (-5+x^2\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-8 \int \frac {x}{3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )} \, dx\\ &=4 \int \left (\frac {7}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}-\frac {4 x}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}+\frac {3 x^2}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}+\frac {2 x^3}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}-\frac {20 x}{\left (-5+x^2\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}\right ) \, dx-8 \int \frac {x}{3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )} \, dx\\ &=8 \int \frac {x^3}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-8 \int \frac {x}{3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )} \, dx+12 \int \frac {x^2}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-16 \int \frac {x}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx+28 \int \frac {1}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-80 \int \frac {x}{\left (-5+x^2\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx\\ &=8 \int \frac {x^3}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-8 \int \frac {x}{3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )} \, dx+12 \int \frac {x^2}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-16 \int \frac {x}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx+28 \int \frac {1}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-80 \int \left (-\frac {1}{2 \left (\sqrt {5}-x\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}+\frac {1}{2 \left (\sqrt {5}+x\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2}\right ) \, dx\\ &=8 \int \frac {x^3}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-8 \int \frac {x}{3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )} \, dx+12 \int \frac {x^2}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-16 \int \frac {x}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx+28 \int \frac {1}{\left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx+40 \int \frac {1}{\left (\sqrt {5}-x\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx-40 \int \frac {1}{\left (\sqrt {5}+x\right ) \left (3 x+x^2-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.02, size = 31, normalized size = 0.97 \begin {gather*} -\frac {4 x^2}{x (3+x)-\log \left (e^{7/x} \left (-5+x^2\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 34, normalized size = 1.06 \begin {gather*} -\frac {4 \, x^{2}}{x^{2} + 3 \, x - \log \left ({\left (x^{4} - 10 \, x^{2} + 25\right )} e^{\frac {7}{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.76, size = 31, normalized size = 0.97 \begin {gather*} -\frac {4 \, x^{3}}{x^{3} + 3 \, x^{2} - x \log \left (x^{4} - 10 \, x^{2} + 25\right ) - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 235, normalized size = 7.34
method | result | size |
risch | \(-\frac {8 x^{2}}{i \pi \mathrm {csgn}\left (i \left (x^{2}-5\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}-5\right )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i \left (x^{2}-5\right )\right ) \mathrm {csgn}\left (i \left (x^{2}-5\right )^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (x^{2}-5\right )^{2}\right )^{3}+i \pi \,\mathrm {csgn}\left (i \left (x^{2}-5\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {7}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {7}{x}} \left (x^{2}-5\right )^{2}\right )-i \pi \,\mathrm {csgn}\left (i \left (x^{2}-5\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {7}{x}} \left (x^{2}-5\right )^{2}\right )^{2}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {7}{x}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {7}{x}} \left (x^{2}-5\right )^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i {\mathrm e}^{\frac {7}{x}} \left (x^{2}-5\right )^{2}\right )^{3}+2 x^{2}+6 x -4 \ln \left (x^{2}-5\right )-2 \ln \left ({\mathrm e}^{\frac {7}{x}}\right )}\) | \(235\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.94, size = 26, normalized size = 0.81 \begin {gather*} -\frac {4 \, x^{3}}{x^{3} + 3 \, x^{2} - 2 \, x \log \left (x^{2} - 5\right ) - 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \left ({\mathrm {e}}^{7/x}\,\left (x^4-10\,x^2+25\right )\right )\,\left (40\,x-8\,x^3\right )-88\,x^2+16\,x^3+12\,x^4+140}{\ln \left ({\mathrm {e}}^{7/x}\,\left (x^4-10\,x^2+25\right )\right )\,\left (-2\,x^4-6\,x^3+10\,x^2+30\,x\right )+{\ln \left ({\mathrm {e}}^{7/x}\,\left (x^4-10\,x^2+25\right )\right )}^2\,\left (x^2-5\right )-45\,x^2-30\,x^3+4\,x^4+6\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 27, normalized size = 0.84 \begin {gather*} \frac {4 x^{2}}{- x^{2} - 3 x + \log {\left (\left (x^{4} - 10 x^{2} + 25\right ) e^{\frac {7}{x}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________