Optimal. Leaf size=34 \[ e^{\frac {5}{\log (2)}}+2 x-\frac {\log (2)}{\log \left (e^{\frac {x}{4+e^2}}-x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 26, normalized size of antiderivative = 0.76, number of steps used = 4, number of rules used = 3, integrand size = 121, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6, 6688, 6686} \begin {gather*} 2 x-\frac {\log (2)}{\log \left (e^{\frac {x}{4+e^2}}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x}{4+e^2}} \log (2)+\left (-4-e^2\right ) \log (2)+\left (e^{\frac {x}{4+e^2}} \left (8+2 e^2\right )-8 x-2 e^2 x\right ) \log ^2\left (e^{\frac {x}{4+e^2}}-x\right )}{\left (e^{\frac {x}{4+e^2}} \left (4+e^2\right )+\left (-4-e^2\right ) x\right ) \log ^2\left (e^{\frac {x}{4+e^2}}-x\right )} \, dx\\ &=\int \left (2+\frac {\left (e^{\frac {x}{4+e^2}}-4 \left (1+\frac {e^2}{4}\right )\right ) \log (2)}{\left (4+e^2\right ) \left (e^{\frac {x}{4+e^2}}-x\right ) \log ^2\left (e^{\frac {x}{4+e^2}}-x\right )}\right ) \, dx\\ &=2 x+\frac {\log (2) \int \frac {e^{\frac {x}{4+e^2}}-4 \left (1+\frac {e^2}{4}\right )}{\left (e^{\frac {x}{4+e^2}}-x\right ) \log ^2\left (e^{\frac {x}{4+e^2}}-x\right )} \, dx}{4+e^2}\\ &=2 x-\frac {\log (2)}{\log \left (e^{\frac {x}{4+e^2}}-x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 26, normalized size = 0.76 \begin {gather*} 2 x-\frac {\log (2)}{\log \left (e^{\frac {x}{4+e^2}}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 39, normalized size = 1.15 \begin {gather*} \frac {2 \, x \log \left (-x + e^{\left (\frac {x}{e^{2} + 4}\right )}\right ) - \log \relax (2)}{\log \left (-x + e^{\left (\frac {x}{e^{2} + 4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.07, size = 39, normalized size = 1.15 \begin {gather*} \frac {2 \, x \log \left (-x + e^{\left (\frac {x}{e^{2} + 4}\right )}\right ) - \log \relax (2)}{\log \left (-x + e^{\left (\frac {x}{e^{2} + 4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.74
method | result | size |
risch | \(2 x -\frac {\ln \relax (2)}{\ln \left ({\mathrm e}^{\frac {x}{4+{\mathrm e}^{2}}}-x \right )}\) | \(25\) |
norman | \(\frac {2 x \ln \left ({\mathrm e}^{\frac {x}{4+{\mathrm e}^{2}}}-x \right )-\ln \relax (2)}{\ln \left ({\mathrm e}^{\frac {x}{4+{\mathrm e}^{2}}}-x \right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.81, size = 39, normalized size = 1.15 \begin {gather*} \frac {2 \, x \log \left (-x + e^{\left (\frac {x}{e^{2} + 4}\right )}\right ) - \log \relax (2)}{\log \left (-x + e^{\left (\frac {x}{e^{2} + 4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 24, normalized size = 0.71 \begin {gather*} 2\,x-\frac {\ln \relax (2)}{\ln \left ({\mathrm {e}}^{\frac {x}{{\mathrm {e}}^2+4}}-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 17, normalized size = 0.50 \begin {gather*} 2 x - \frac {\log {\relax (2 )}}{\log {\left (- x + e^{\frac {x}{4 + e^{2}}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________