Optimal. Leaf size=14 \[ \log \left (\frac {16}{\left (1+x+(3+\log (x))^x\right )^4}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12-4 \log (x)+(3+\log (x))^x (-4+(-12-4 \log (x)) \log (3+\log (x)))}{3+3 x+(1+x) \log (x)+(3+\log (x))^{1+x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12-4 \log (x)+(3+\log (x))^x (-4+(-12-4 \log (x)) \log (3+\log (x)))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx\\ &=\int \left (-\frac {4 (1+3 \log (3+\log (x))+\log (x) \log (3+\log (x)))}{3+\log (x)}+\frac {4 (-2+x-\log (x)+3 \log (3+\log (x))+3 x \log (3+\log (x))+\log (x) \log (3+\log (x))+x \log (x) \log (3+\log (x)))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}\right ) \, dx\\ &=-\left (4 \int \frac {1+3 \log (3+\log (x))+\log (x) \log (3+\log (x))}{3+\log (x)} \, dx\right )+4 \int \frac {-2+x-\log (x)+3 \log (3+\log (x))+3 x \log (3+\log (x))+\log (x) \log (3+\log (x))+x \log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx\\ &=-\left (4 \int \left (\frac {1}{3+\log (x)}+\log (3+\log (x))\right ) \, dx\right )+4 \int \frac {-2+x+3 (1+x) \log (3+\log (x))+\log (x) (-1+(1+x) \log (3+\log (x)))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx\\ &=-\left (4 \int \frac {1}{3+\log (x)} \, dx\right )-4 \int \log (3+\log (x)) \, dx+4 \int \left (-\frac {2}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}+\frac {x}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}-\frac {\log (x)}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}+\frac {3 \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}+\frac {3 x \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}+\frac {\log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}+\frac {x \log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )}\right ) \, dx\\ &=4 \int \frac {x}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx-4 \int \frac {\log (x)}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx-4 \int \log (3+\log (x)) \, dx+4 \int \frac {\log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx+4 \int \frac {x \log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx-4 \operatorname {Subst}\left (\int \frac {e^x}{3+x} \, dx,x,\log (x)\right )-8 \int \frac {1}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx+12 \int \frac {\log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx+12 \int \frac {x \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx\\ &=-\frac {4 \text {Ei}(3+\log (x))}{e^3}+4 \int \frac {x}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx-4 \int \frac {\log (x)}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx-4 \int \log (3+\log (x)) \, dx+4 \int \frac {\log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx+4 \int \frac {x \log (x) \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx-8 \int \frac {1}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx+12 \int \frac {\log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx+12 \int \frac {x \log (3+\log (x))}{(3+\log (x)) \left (1+x+(3+\log (x))^x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 12, normalized size = 0.86 \begin {gather*} -4 \log \left (1+x+(3+\log (x))^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 12, normalized size = 0.86 \begin {gather*} -4 \, \log \left (x + {\left (\log \relax (x) + 3\right )}^{x} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.45, size = 67, normalized size = 4.79 \begin {gather*} -\frac {4 \, x e^{3} \log \relax (x) \log \left (\log \relax (x) + 3\right )}{e^{3} \log \relax (x) + 3 \, e^{3}} + 4 \, x \log \left (\log \relax (x) + 3\right ) - \frac {12 \, x e^{3} \log \left (\log \relax (x) + 3\right )}{e^{3} \log \relax (x) + 3 \, e^{3}} - 4 \, \log \left (x + {\left (\log \relax (x) + 3\right )}^{x} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 13, normalized size = 0.93
method | result | size |
risch | \(-4 \ln \left (\left (3+\ln \relax (x )\right )^{x}+x +1\right )\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 12, normalized size = 0.86 \begin {gather*} -4 \, \log \left (x + {\left (\log \relax (x) + 3\right )}^{x} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.15, size = 12, normalized size = 0.86 \begin {gather*} -4\,\ln \left (x+{\left (\ln \relax (x)+3\right )}^x+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 17, normalized size = 1.21 \begin {gather*} - 4 \log {\left (x + e^{x \log {\left (\log {\relax (x )} + 3 \right )}} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________