Optimal. Leaf size=24 \[ \frac {1}{x}-x+\frac {3-4 (-2+\log (5))+\log (x)}{4 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 33, normalized size of antiderivative = 1.38, number of steps used = 6, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 14, 2304} \begin {gather*} -x+\frac {1}{4 x}+\frac {\log (x)}{4 x}+\frac {7-\log (25)}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-14-4 x^2+4 \log (5)-\log (x)}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {2 \left (7+2 x^2-2 \log (5)\right )}{x^2}-\frac {\log (x)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {\log (x)}{x^2} \, dx\right )-\frac {1}{2} \int \frac {7+2 x^2-2 \log (5)}{x^2} \, dx\\ &=\frac {1}{4 x}+\frac {\log (x)}{4 x}-\frac {1}{2} \int \left (2+\frac {7-2 \log (5)}{x^2}\right ) \, dx\\ &=\frac {1}{4 x}-x+\frac {7-\log (25)}{2 x}+\frac {\log (x)}{4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 1.00 \begin {gather*} \frac {15}{4 x}-x+\frac {\log \left (\frac {x}{625}\right )}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 20, normalized size = 0.83 \begin {gather*} -\frac {4 \, x^{2} + 4 \, \log \relax (5) - \log \relax (x) - 15}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 22, normalized size = 0.92 \begin {gather*} -x - \frac {4 \, \log \relax (5) - 15}{4 \, x} + \frac {\log \relax (x)}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 24, normalized size = 1.00
method | result | size |
default | \(-x +\frac {\ln \relax (x )}{4 x}+\frac {15}{4 x}-\frac {\ln \relax (5)}{x}\) | \(24\) |
risch | \(\frac {\ln \relax (x )}{4 x}-\frac {4 x^{2}+4 \ln \relax (5)-15}{4 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 0.96 \begin {gather*} -x - \frac {\log \relax (5)}{x} + \frac {\log \relax (x)}{4 \, x} + \frac {15}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.38, size = 18, normalized size = 0.75 \begin {gather*} \frac {\frac {\ln \relax (x)}{4}-\ln \relax (5)+\frac {15}{4}}{x}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.71 \begin {gather*} - x + \frac {\log {\relax (x )}}{4 x} - \frac {-15 + 4 \log {\relax (5 )}}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________