Optimal. Leaf size=31 \[ \frac {x^2 \left (\frac {3 x}{2}-\log \left (\frac {x^3}{-1+x}\right )\right )^2}{2 \log ^2(5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 62, normalized size of antiderivative = 2.00, number of steps used = 42, number of rules used = 16, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.213, Rules used = {12, 6742, 893, 2514, 2487, 29, 8, 2494, 2390, 2301, 2394, 2315, 2495, 43, 30, 2498} \begin {gather*} \frac {9 x^4}{8 \log ^2(5)}-\frac {3 x^3 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 29
Rule 30
Rule 43
Rule 893
Rule 2301
Rule 2315
Rule 2390
Rule 2394
Rule 2487
Rule 2494
Rule 2495
Rule 2498
Rule 2514
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {9 x^2-15 x^3+9 x^4+\left (-6 x+13 x^2-9 x^3\right ) \log \left (\frac {x^3}{-1+x}\right )+\left (-2 x+2 x^2\right ) \log ^2\left (\frac {x^3}{-1+x}\right )}{-2+2 x} \, dx}{\log ^2(5)}\\ &=\frac {\int \left (\frac {3 x^2 \left (3-5 x+3 x^2\right )}{2 (-1+x)}-\frac {x \left (6-13 x+9 x^2\right ) \log \left (\frac {x^3}{-1+x}\right )}{2 (-1+x)}+x \log ^2\left (\frac {x^3}{-1+x}\right )\right ) \, dx}{\log ^2(5)}\\ &=-\frac {\int \frac {x \left (6-13 x+9 x^2\right ) \log \left (\frac {x^3}{-1+x}\right )}{-1+x} \, dx}{2 \log ^2(5)}+\frac {\int x \log ^2\left (\frac {x^3}{-1+x}\right ) \, dx}{\log ^2(5)}+\frac {3 \int \frac {x^2 \left (3-5 x+3 x^2\right )}{-1+x} \, dx}{2 \log ^2(5)}\\ &=\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}-\frac {\int \left (2 \log \left (\frac {x^3}{-1+x}\right )+\frac {2 \log \left (\frac {x^3}{-1+x}\right )}{-1+x}-4 x \log \left (\frac {x^3}{-1+x}\right )+9 x^2 \log \left (\frac {x^3}{-1+x}\right )\right ) \, dx}{2 \log ^2(5)}+\frac {\int \frac {x^2 \log \left (\frac {x^3}{-1+x}\right )}{-1+x} \, dx}{\log ^2(5)}+\frac {3 \int \left (1+\frac {1}{-1+x}+x-2 x^2+3 x^3\right ) \, dx}{2 \log ^2(5)}-\frac {3 \int x \log \left (\frac {x^3}{-1+x}\right ) \, dx}{\log ^2(5)}\\ &=\frac {3 x}{2 \log ^2(5)}+\frac {3 x^2}{4 \log ^2(5)}-\frac {x^3}{\log ^2(5)}+\frac {9 x^4}{8 \log ^2(5)}+\frac {3 \log (1-x)}{2 \log ^2(5)}-\frac {3 x^2 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}-\frac {\int \log \left (\frac {x^3}{-1+x}\right ) \, dx}{\log ^2(5)}-\frac {\int \frac {\log \left (\frac {x^3}{-1+x}\right )}{-1+x} \, dx}{\log ^2(5)}+\frac {\int \left (\log \left (\frac {x^3}{-1+x}\right )+\frac {\log \left (\frac {x^3}{-1+x}\right )}{-1+x}+x \log \left (\frac {x^3}{-1+x}\right )\right ) \, dx}{\log ^2(5)}-\frac {3 \int \frac {x^2}{-1+x} \, dx}{2 \log ^2(5)}+\frac {2 \int x \log \left (\frac {x^3}{-1+x}\right ) \, dx}{\log ^2(5)}+\frac {9 \int x \, dx}{2 \log ^2(5)}-\frac {9 \int x^2 \log \left (\frac {x^3}{-1+x}\right ) \, dx}{2 \log ^2(5)}\\ &=\frac {3 x}{2 \log ^2(5)}+\frac {3 x^2}{\log ^2(5)}-\frac {x^3}{\log ^2(5)}+\frac {9 x^4}{8 \log ^2(5)}+\frac {3 \log (1-x)}{2 \log ^2(5)}+\frac {(1-x) \log \left (-\frac {x^3}{1-x}\right )}{\log ^2(5)}-\frac {x^2 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}-\frac {3 x^3 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}-\frac {\log (-1+x) \log \left (-\frac {x^3}{1-x}\right )}{\log ^2(5)}+\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {\int \frac {x^2}{-1+x} \, dx}{\log ^2(5)}-\frac {\int \frac {\log (-1+x)}{-1+x} \, dx}{\log ^2(5)}+\frac {\int \log \left (\frac {x^3}{-1+x}\right ) \, dx}{\log ^2(5)}+\frac {\int \frac {\log \left (\frac {x^3}{-1+x}\right )}{-1+x} \, dx}{\log ^2(5)}+\frac {\int x \log \left (\frac {x^3}{-1+x}\right ) \, dx}{\log ^2(5)}-\frac {3 \int \frac {x^3}{-1+x} \, dx}{2 \log ^2(5)}-\frac {3 \int \left (1+\frac {1}{-1+x}+x\right ) \, dx}{2 \log ^2(5)}+\frac {2 \int 1 \, dx}{\log ^2(5)}-\frac {3 \int \frac {1}{x} \, dx}{\log ^2(5)}-\frac {3 \int x \, dx}{\log ^2(5)}+\frac {3 \int \frac {\log (-1+x)}{x} \, dx}{\log ^2(5)}+\frac {9 \int x^2 \, dx}{2 \log ^2(5)}\\ &=\frac {2 x}{\log ^2(5)}+\frac {3 x^2}{4 \log ^2(5)}+\frac {x^3}{2 \log ^2(5)}+\frac {9 x^4}{8 \log ^2(5)}-\frac {3 \log (x)}{\log ^2(5)}+\frac {3 \log (-1+x) \log (x)}{\log ^2(5)}-\frac {3 x^3 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {\int \frac {x^2}{-1+x} \, dx}{2 \log ^2(5)}+\frac {\int \left (1+\frac {1}{-1+x}+x\right ) \, dx}{\log ^2(5)}+\frac {\int \frac {\log (-1+x)}{-1+x} \, dx}{\log ^2(5)}-\frac {\operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-1+x\right )}{\log ^2(5)}-\frac {3 \int x \, dx}{2 \log ^2(5)}-\frac {3 \int \left (1+\frac {1}{-1+x}+x+x^2\right ) \, dx}{2 \log ^2(5)}-\frac {2 \int 1 \, dx}{\log ^2(5)}+\frac {3 \int \frac {1}{x} \, dx}{\log ^2(5)}-\frac {3 \int \frac {\log (-1+x)}{x} \, dx}{\log ^2(5)}-\frac {3 \int \frac {\log (x)}{-1+x} \, dx}{\log ^2(5)}\\ &=-\frac {x}{2 \log ^2(5)}-\frac {x^2}{4 \log ^2(5)}+\frac {9 x^4}{8 \log ^2(5)}-\frac {\log (1-x)}{2 \log ^2(5)}-\frac {\log ^2(-1+x)}{2 \log ^2(5)}-\frac {3 x^3 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {3 \text {Li}_2(1-x)}{\log ^2(5)}+\frac {\int \left (1+\frac {1}{-1+x}+x\right ) \, dx}{2 \log ^2(5)}+\frac {\operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-1+x\right )}{\log ^2(5)}+\frac {3 \int \frac {\log (x)}{-1+x} \, dx}{\log ^2(5)}\\ &=\frac {9 x^4}{8 \log ^2(5)}-\frac {3 x^3 \log \left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}+\frac {x^2 \log ^2\left (-\frac {x^3}{1-x}\right )}{2 \log ^2(5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.12, size = 142, normalized size = 4.58 \begin {gather*} \frac {\frac {9 x^4}{4}-3 \log (1-x)+\log ^2(1-x)+3 \log (-1+x)-\log ^2(-1+x)+6 \log (-1+x) \log (x)-3 x^3 \log \left (-\frac {x^3}{1-x}\right )+2 \log (1-x) \log \left (-\frac {x^3}{1-x}\right )+x^2 \log ^2\left (-\frac {x^3}{1-x}\right )-2 \log (-1+x) \log \left (\frac {x^3}{-1+x}\right )+6 \text {Li}_2(1-x)+6 \text {Li}_2(x)}{2 \log ^2(5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 44, normalized size = 1.42 \begin {gather*} \frac {9 \, x^{4} - 12 \, x^{3} \log \left (\frac {x^{3}}{x - 1}\right ) + 4 \, x^{2} \log \left (\frac {x^{3}}{x - 1}\right )^{2}}{8 \, \log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 44, normalized size = 1.42 \begin {gather*} \frac {9 \, x^{4} - 12 \, x^{3} \log \left (\frac {x^{3}}{x - 1}\right ) + 4 \, x^{2} \log \left (\frac {x^{3}}{x - 1}\right )^{2}}{8 \, \log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 51, normalized size = 1.65
method | result | size |
risch | \(\frac {\ln \left (\frac {x^{3}}{x -1}\right )^{2} x^{2}}{2 \ln \relax (5)^{2}}-\frac {3 \ln \left (\frac {x^{3}}{x -1}\right ) x^{3}}{2 \ln \relax (5)^{2}}+\frac {9 x^{4}}{8 \ln \relax (5)^{2}}\) | \(51\) |
norman | \(\frac {\frac {9 x^{4}}{8 \ln \relax (5)}+\frac {x^{2} \ln \left (\frac {x^{3}}{x -1}\right )^{2}}{2 \ln \relax (5)}-\frac {3 x^{3} \ln \left (\frac {x^{3}}{x -1}\right )}{2 \ln \relax (5)}}{\ln \relax (5)}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.88, size = 63, normalized size = 2.03 \begin {gather*} \frac {9 \, x^{4} + 4 \, x^{2} \log \left (x - 1\right )^{2} - 36 \, x^{3} \log \relax (x) + 36 \, x^{2} \log \relax (x)^{2} + 12 \, {\left (x^{3} - 2 \, x^{2} \log \relax (x) - 1\right )} \log \left (x - 1\right ) + 12 \, \log \left (x - 1\right )}{8 \, \log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 27, normalized size = 0.87 \begin {gather*} \frac {x^2\,{\left (3\,x-2\,\ln \left (\frac {x^3}{x-1}\right )\right )}^2}{8\,{\ln \relax (5)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 51, normalized size = 1.65 \begin {gather*} \frac {9 x^{4}}{8 \log {\relax (5 )}^{2}} - \frac {3 x^{3} \log {\left (\frac {x^{3}}{x - 1} \right )}}{2 \log {\relax (5 )}^{2}} + \frac {x^{2} \log {\left (\frac {x^{3}}{x - 1} \right )}^{2}}{2 \log {\relax (5 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________