Optimal. Leaf size=20 \[ \log \left (-95 \left (-2+\frac {2 e^x}{x (\log (5)+\log (x))}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (1+(1-x) \log (5))+e^x (1-x) \log (x)}{-e^x x \log (5)+x^2 \log ^2(5)+\left (-e^x x+2 x^2 \log (5)\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (-1+x \log (5)+x \log (x)-\log (5 x))}{x \left (e^x-x \log (5)-x \log (x)\right ) \log (5 x)} \, dx\\ &=\int \left (\frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right )}+\frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)}-\frac {e^x \log (5)}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)}-\frac {e^x \log (x)}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)}\right ) \, dx\\ &=-\left (\log (5) \int \frac {e^x}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)} \, dx\right )+\int \frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right )} \, dx+\int \frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)} \, dx-\int \frac {e^x \log (x)}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.81, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^x (1+(1-x) \log (5))+e^x (1-x) \log (x)}{-e^x x \log (5)+x^2 \log ^2(5)+\left (-e^x x+2 x^2 \log (5)\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 27, normalized size = 1.35 \begin {gather*} \log \left (\frac {x \log \relax (5) + x \log \relax (x) - e^{x}}{x}\right ) - \log \left (\log \relax (5) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 27, normalized size = 1.35 \begin {gather*} \log \left (-x \log \relax (5) - x \log \relax (x) + e^{x}\right ) - \log \relax (x) - \log \left (\log \relax (5) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 27, normalized size = 1.35
method | result | size |
risch | \(\ln \left (\ln \relax (x )+\frac {x \ln \relax (5)-{\mathrm e}^{x}}{x}\right )-\ln \left (\ln \relax (5)+\ln \relax (x )\right )\) | \(27\) |
norman | \(-\ln \relax (x )-\ln \left (\ln \relax (5)+\ln \relax (x )\right )+\ln \left (x \ln \relax (5)+x \ln \relax (x )-{\mathrm e}^{x}\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 27, normalized size = 1.35 \begin {gather*} \log \left (-x \log \relax (5) - x \log \relax (x) + e^{x}\right ) - \log \relax (x) - \log \left (\log \relax (5) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x-1\right )-1\right )+{\mathrm {e}}^x\,\ln \relax (x)\,\left (x-1\right )}{x^2\,{\ln \relax (5)}^2+x^2\,{\ln \relax (x)}^2+\ln \relax (x)\,\left (2\,x^2\,\ln \relax (5)-x\,{\mathrm {e}}^x\right )-x\,{\mathrm {e}}^x\,\ln \relax (5)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 26, normalized size = 1.30 \begin {gather*} - \log {\relax (x )} - \log {\left (\log {\relax (x )} + \log {\relax (5 )} \right )} + \log {\left (- x \log {\relax (x )} - x \log {\relax (5 )} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________