3.33.33 \(\int \frac {e^x (1+(1-x) \log (5))+e^x (1-x) \log (x)}{-e^x x \log (5)+x^2 \log ^2(5)+(-e^x x+2 x^2 \log (5)) \log (x)+x^2 \log ^2(x)} \, dx\)

Optimal. Leaf size=20 \[ \log \left (-95 \left (-2+\frac {2 e^x}{x (\log (5)+\log (x))}\right )\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 2.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (1+(1-x) \log (5))+e^x (1-x) \log (x)}{-e^x x \log (5)+x^2 \log ^2(5)+\left (-e^x x+2 x^2 \log (5)\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^x*(1 + (1 - x)*Log[5]) + E^x*(1 - x)*Log[x])/(-(E^x*x*Log[5]) + x^2*Log[5]^2 + (-(E^x*x) + 2*x^2*Log[5]
)*Log[x] + x^2*Log[x]^2),x]

[Out]

Defer[Int][E^x/(x*(-E^x + x*Log[5] + x*Log[x])), x] - Log[5]*Defer[Int][E^x/((-E^x + x*Log[5] + x*Log[x])*Log[
5*x]), x] + Defer[Int][E^x/(x*(-E^x + x*Log[5] + x*Log[x])*Log[5*x]), x] - Defer[Int][(E^x*Log[x])/((-E^x + x*
Log[5] + x*Log[x])*Log[5*x]), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (-1+x \log (5)+x \log (x)-\log (5 x))}{x \left (e^x-x \log (5)-x \log (x)\right ) \log (5 x)} \, dx\\ &=\int \left (\frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right )}+\frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)}-\frac {e^x \log (5)}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)}-\frac {e^x \log (x)}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)}\right ) \, dx\\ &=-\left (\log (5) \int \frac {e^x}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)} \, dx\right )+\int \frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right )} \, dx+\int \frac {e^x}{x \left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)} \, dx-\int \frac {e^x \log (x)}{\left (-e^x+x \log (5)+x \log (x)\right ) \log (5 x)} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [F]  time = 0.81, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^x (1+(1-x) \log (5))+e^x (1-x) \log (x)}{-e^x x \log (5)+x^2 \log ^2(5)+\left (-e^x x+2 x^2 \log (5)\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(E^x*(1 + (1 - x)*Log[5]) + E^x*(1 - x)*Log[x])/(-(E^x*x*Log[5]) + x^2*Log[5]^2 + (-(E^x*x) + 2*x^2*
Log[5])*Log[x] + x^2*Log[x]^2),x]

[Out]

Integrate[(E^x*(1 + (1 - x)*Log[5]) + E^x*(1 - x)*Log[x])/(-(E^x*x*Log[5]) + x^2*Log[5]^2 + (-(E^x*x) + 2*x^2*
Log[5])*Log[x] + x^2*Log[x]^2), x]

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 27, normalized size = 1.35 \begin {gather*} \log \left (\frac {x \log \relax (5) + x \log \relax (x) - e^{x}}{x}\right ) - \log \left (\log \relax (5) + \log \relax (x)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x)*log(x)+((-x+1)*log(5)+1)*exp(x))/(x^2*log(x)^2+(-exp(x)*x+2*x^2*log(5))*log(x)-x*exp(
x)*log(5)+x^2*log(5)^2),x, algorithm="fricas")

[Out]

log((x*log(5) + x*log(x) - e^x)/x) - log(log(5) + log(x))

________________________________________________________________________________________

giac [A]  time = 0.30, size = 27, normalized size = 1.35 \begin {gather*} \log \left (-x \log \relax (5) - x \log \relax (x) + e^{x}\right ) - \log \relax (x) - \log \left (\log \relax (5) + \log \relax (x)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x)*log(x)+((-x+1)*log(5)+1)*exp(x))/(x^2*log(x)^2+(-exp(x)*x+2*x^2*log(5))*log(x)-x*exp(
x)*log(5)+x^2*log(5)^2),x, algorithm="giac")

[Out]

log(-x*log(5) - x*log(x) + e^x) - log(x) - log(log(5) + log(x))

________________________________________________________________________________________

maple [A]  time = 0.21, size = 27, normalized size = 1.35




method result size



risch \(\ln \left (\ln \relax (x )+\frac {x \ln \relax (5)-{\mathrm e}^{x}}{x}\right )-\ln \left (\ln \relax (5)+\ln \relax (x )\right )\) \(27\)
norman \(-\ln \relax (x )-\ln \left (\ln \relax (5)+\ln \relax (x )\right )+\ln \left (x \ln \relax (5)+x \ln \relax (x )-{\mathrm e}^{x}\right )\) \(28\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1-x)*exp(x)*ln(x)+((1-x)*ln(5)+1)*exp(x))/(x^2*ln(x)^2+(-exp(x)*x+2*x^2*ln(5))*ln(x)-x*exp(x)*ln(5)+x^2*
ln(5)^2),x,method=_RETURNVERBOSE)

[Out]

ln(ln(x)+1/x*(x*ln(5)-exp(x)))-ln(ln(5)+ln(x))

________________________________________________________________________________________

maxima [A]  time = 0.91, size = 27, normalized size = 1.35 \begin {gather*} \log \left (-x \log \relax (5) - x \log \relax (x) + e^{x}\right ) - \log \relax (x) - \log \left (\log \relax (5) + \log \relax (x)\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x)*log(x)+((-x+1)*log(5)+1)*exp(x))/(x^2*log(x)^2+(-exp(x)*x+2*x^2*log(5))*log(x)-x*exp(
x)*log(5)+x^2*log(5)^2),x, algorithm="maxima")

[Out]

log(-x*log(5) - x*log(x) + e^x) - log(x) - log(log(5) + log(x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {{\mathrm {e}}^x\,\left (\ln \relax (5)\,\left (x-1\right )-1\right )+{\mathrm {e}}^x\,\ln \relax (x)\,\left (x-1\right )}{x^2\,{\ln \relax (5)}^2+x^2\,{\ln \relax (x)}^2+\ln \relax (x)\,\left (2\,x^2\,\ln \relax (5)-x\,{\mathrm {e}}^x\right )-x\,{\mathrm {e}}^x\,\ln \relax (5)} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x)*(log(5)*(x - 1) - 1) + exp(x)*log(x)*(x - 1))/(x^2*log(5)^2 + x^2*log(x)^2 + log(x)*(2*x^2*log(5)
 - x*exp(x)) - x*exp(x)*log(5)),x)

[Out]

-int((exp(x)*(log(5)*(x - 1) - 1) + exp(x)*log(x)*(x - 1))/(x^2*log(5)^2 + x^2*log(x)^2 + log(x)*(2*x^2*log(5)
 - x*exp(x)) - x*exp(x)*log(5)), x)

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 26, normalized size = 1.30 \begin {gather*} - \log {\relax (x )} - \log {\left (\log {\relax (x )} + \log {\relax (5 )} \right )} + \log {\left (- x \log {\relax (x )} - x \log {\relax (5 )} + e^{x} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x)*ln(x)+((-x+1)*ln(5)+1)*exp(x))/(x**2*ln(x)**2+(-exp(x)*x+2*x**2*ln(5))*ln(x)-x*exp(x)
*ln(5)+x**2*ln(5)**2),x)

[Out]

-log(x) - log(log(x) + log(5)) + log(-x*log(x) - x*log(5) + exp(x))

________________________________________________________________________________________