Optimal. Leaf size=30 \[ \frac {2 e^{-2-2 x^2}}{x^2 \left (x+5 e^{6-x^2} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2-2 x^2} \left (-6-8 x^2+e^{6-x^2} \left (-30-20 x^2\right )\right )}{x^4+25 e^{12-2 x^2} x^4+10 e^{6-x^2} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6-8 x^2+e^{6-x^2} \left (-30-20 x^2\right )}{e^2 \left (5 e^6+e^{x^2}\right )^2 x^4} \, dx\\ &=\frac {\int \frac {-6-8 x^2+e^{6-x^2} \left (-30-20 x^2\right )}{\left (5 e^6+e^{x^2}\right )^2 x^4} \, dx}{e^2}\\ &=\frac {\int \left (-\frac {4}{\left (5 e^6+e^{x^2}\right )^2 x^2}-\frac {2 e^{-6-x^2} \left (3+2 x^2\right )}{5 x^4}+\frac {2 \left (3+2 x^2\right )}{5 e^6 \left (5 e^6+e^{x^2}\right ) x^4}\right ) \, dx}{e^2}\\ &=\frac {2 \int \frac {3+2 x^2}{\left (5 e^6+e^{x^2}\right ) x^4} \, dx}{5 e^8}-\frac {2 \int \frac {e^{-6-x^2} \left (3+2 x^2\right )}{x^4} \, dx}{5 e^2}-\frac {4 \int \frac {1}{\left (5 e^6+e^{x^2}\right )^2 x^2} \, dx}{e^2}\\ &=\frac {2 e^{-8-x^2}}{5 x^3}+\frac {2 \int \left (\frac {3}{\left (5 e^6+e^{x^2}\right ) x^4}+\frac {2}{\left (5 e^6+e^{x^2}\right ) x^2}\right ) \, dx}{5 e^8}-\frac {4 \int \frac {1}{\left (5 e^6+e^{x^2}\right )^2 x^2} \, dx}{e^2}\\ &=\frac {2 e^{-8-x^2}}{5 x^3}+\frac {4 \int \frac {1}{\left (5 e^6+e^{x^2}\right ) x^2} \, dx}{5 e^8}+\frac {6 \int \frac {1}{\left (5 e^6+e^{x^2}\right ) x^4} \, dx}{5 e^8}-\frac {4 \int \frac {1}{\left (5 e^6+e^{x^2}\right )^2 x^2} \, dx}{e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 27, normalized size = 0.90 \begin {gather*} \frac {2 e^{-2-x^2}}{\left (5 e^6+e^{x^2}\right ) x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 32, normalized size = 1.07 \begin {gather*} \frac {2 \, e^{\left (-2 \, x^{2} + 12\right )}}{x^{3} e^{14} + 5 \, x^{3} e^{\left (-x^{2} + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 61, normalized size = 2.03 \begin {gather*} \frac {2 \, {\left (x^{2} e^{\left (-x^{2} + 6\right )} + 5 \, x^{2} e^{\left (-2 \, x^{2} + 12\right )}\right )}}{10 \, x^{5} e^{14} + x^{5} e^{\left (x^{2} + 8\right )} + 25 \, x^{5} e^{\left (-x^{2} + 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 34, normalized size = 1.13
method | result | size |
norman | \(\frac {2 \,{\mathrm e}^{-14} {\mathrm e}^{-2 x^{2}+12}}{x^{3} \left (1+5 \,{\mathrm e}^{-x^{2}+6}\right )}\) | \(34\) |
risch | \(-\frac {2 \,{\mathrm e}^{-14}}{25 x^{3}}+\frac {2 \,{\mathrm e}^{-x^{2}-8}}{5 x^{3}}+\frac {2 \,{\mathrm e}^{-14}}{25 x^{3} \left (1+5 \,{\mathrm e}^{-x^{2}+6}\right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left (4 \, x^{2} + 5 \, {\left (2 \, x^{2} + 3\right )} e^{\left (-x^{2} + 6\right )} + 3\right )} e^{\left (-2 \, x^{2} - 2\right )}}{10 \, x^{4} e^{\left (-x^{2} + 6\right )} + 25 \, x^{4} e^{\left (-2 \, x^{2} + 12\right )} + x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 32, normalized size = 1.07 \begin {gather*} \frac {2\,{\mathrm {e}}^{12}\,{\mathrm {e}}^{-2\,x^2}}{x^3\,{\mathrm {e}}^{14}+5\,x^3\,{\mathrm {e}}^{20}\,{\mathrm {e}}^{-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 51, normalized size = 1.70 \begin {gather*} \frac {2}{125 x^{3} e^{14} e^{6 - x^{2}} + 25 x^{3} e^{14}} + \frac {2 e^{6 - x^{2}}}{5 x^{3} e^{14}} - \frac {2}{25 x^{3} e^{14}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________