Optimal. Leaf size=23 \[ \log \left (-2+x+6 \left (4+\frac {\left (x+e^{-2+x} x\right )^2}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 27, normalized size of antiderivative = 1.17, number of steps used = 1, number of rules used = 1, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6684} \begin {gather*} \log \left (6 e^{2 x} x+12 e^{x+2} x+e^4 (7 x+22)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (6 e^{2 x} x+12 e^{2+x} x+e^4 (22+7 x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 29, normalized size = 1.26 \begin {gather*} \log \left (22 e^4+7 e^4 x+6 e^{2 x} x+12 e^{2+x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 33, normalized size = 1.43 \begin {gather*} \log \relax (x) + \log \left (\frac {{\left (7 \, x + 22\right )} e^{8} + 6 \, x e^{\left (2 \, x + 4\right )} + 12 \, x e^{\left (x + 6\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 25, normalized size = 1.09 \begin {gather*} \log \left (7 \, x e^{4} + 6 \, x e^{\left (2 \, x\right )} + 12 \, x e^{\left (x + 2\right )} + 22 \, e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.22
method | result | size |
risch | \(\ln \relax (x )+\ln \left ({\mathrm e}^{2 x}+2 \,{\mathrm e}^{2+x}+\frac {\left (7 x +22\right ) {\mathrm e}^{4}}{6 x}\right )\) | \(28\) |
norman | \(\ln \left (7 x \,{\mathrm e}^{4}+12 x \,{\mathrm e}^{2} {\mathrm e}^{x}+6 x \,{\mathrm e}^{2 x}+22 \,{\mathrm e}^{4}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 33, normalized size = 1.43 \begin {gather*} \log \relax (x) + \log \left (\frac {7 \, x e^{4} + 6 \, x e^{\left (2 \, x\right )} + 12 \, x e^{\left (x + 2\right )} + 22 \, e^{4}}{6 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.05, size = 27, normalized size = 1.17 \begin {gather*} \ln \left (22\,{\mathrm {e}}^8+12\,x\,{\mathrm {e}}^{x+6}+7\,x\,{\mathrm {e}}^8+6\,x\,{\mathrm {e}}^{2\,x+4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 32, normalized size = 1.39 \begin {gather*} \log {\relax (x )} + \log {\left (e^{2 x} + 2 e^{2} e^{x} + \frac {7 x e^{4} + 22 e^{4}}{6 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________