3.33.7 \(\int \frac {e (3+3 x)}{25 e^3 x^2+10 e^4 x^2 \log (\frac {8 e^{\frac {1}{x}}}{x})+e^5 x^2 \log ^2(\frac {8 e^{\frac {1}{x}}}{x})} \, dx\)

Optimal. Leaf size=22 \[ \frac {3}{e^3 \left (5+e \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {12, 6688, 6686} \begin {gather*} \frac {3}{e^3 \left (e \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )+5\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E*(3 + 3*x))/(25*E^3*x^2 + 10*E^4*x^2*Log[(8*E^x^(-1))/x] + E^5*x^2*Log[(8*E^x^(-1))/x]^2),x]

[Out]

3/(E^3*(5 + E*Log[(8*E^x^(-1))/x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=e \int \frac {3+3 x}{25 e^3 x^2+10 e^4 x^2 \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )+e^5 x^2 \log ^2\left (\frac {8 e^{\frac {1}{x}}}{x}\right )} \, dx\\ &=e \int \frac {3 (1+x)}{e^3 x^2 \left (5+e \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )\right )^2} \, dx\\ &=\frac {3 \int \frac {1+x}{x^2 \left (5+e \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )\right )^2} \, dx}{e^2}\\ &=\frac {3}{e^3 \left (5+e \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{e^3 \left (5+e \log \left (\frac {8 e^{\frac {1}{x}}}{x}\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E*(3 + 3*x))/(25*E^3*x^2 + 10*E^4*x^2*Log[(8*E^x^(-1))/x] + E^5*x^2*Log[(8*E^x^(-1))/x]^2),x]

[Out]

3/(E^3*(5 + E*Log[(8*E^x^(-1))/x]))

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{e^{4} \log \left (\frac {8 \, e^{\frac {1}{x}}}{x}\right ) + 5 \, e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*log(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*log(8*exp(1/x)/x)+25*x^
2*exp(3)),x, algorithm="fricas")

[Out]

3/(e^4*log(8*e^(1/x)/x) + 5*e^3)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 29, normalized size = 1.32 \begin {gather*} \frac {3 \, x e}{3 \, x e^{5} \log \relax (2) - x e^{5} \log \relax (x) + 5 \, x e^{4} + e^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*log(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*log(8*exp(1/x)/x)+25*x^
2*exp(3)),x, algorithm="giac")

[Out]

3*x*e/(3*x*e^5*log(2) - x*e^5*log(x) + 5*x*e^4 + e^5)

________________________________________________________________________________________

maple [A]  time = 0.52, size = 36, normalized size = 1.64




method result size



norman \(-\frac {3 \,{\mathrm e}^{-3} {\mathrm e} \ln \left (\frac {8 \,{\mathrm e}^{\frac {1}{x}}}{x}\right )}{5 \left (5+\ln \left (\frac {8 \,{\mathrm e}^{\frac {1}{x}}}{x}\right ) {\mathrm e}\right )}\) \(36\)
default \(-\frac {3 \,{\mathrm e}^{-3} x}{x \,{\mathrm e} \ln \relax (x )-{\mathrm e} x \left (\ln \left (\frac {8 \,{\mathrm e}^{\frac {1}{x}}}{x}\right )-\frac {1}{x}+\ln \relax (x )\right )-{\mathrm e}-5 x}\) \(47\)
risch \(\frac {6 i {\mathrm e}^{-3}}{\pi \,{\mathrm e} \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {1}{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {1}{x}}}{x}\right )-\pi \,{\mathrm e} \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {1}{x}}}{x}\right )^{2}-\pi \,{\mathrm e} \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {1}{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {1}{x}}}{x}\right )^{2}+\pi \,{\mathrm e} \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {1}{x}}}{x}\right )^{3}+6 i {\mathrm e} \ln \relax (2)-2 i {\mathrm e} \ln \relax (x )+2 i {\mathrm e} \ln \left ({\mathrm e}^{\frac {1}{x}}\right )+10 i}\) \(133\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*ln(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*ln(8*exp(1/x)/x)+25*x^2*exp(3)
),x,method=_RETURNVERBOSE)

[Out]

-3/5/exp(3)*exp(1)*ln(8*exp(1/x)/x)/(5+ln(8*exp(1/x)/x)*exp(1))

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 32, normalized size = 1.45 \begin {gather*} -\frac {3 \, x e}{x e^{5} \log \relax (x) - {\left (3 \, e^{5} \log \relax (2) + 5 \, e^{4}\right )} x - e^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*log(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*log(8*exp(1/x)/x)+25*x^
2*exp(3)),x, algorithm="maxima")

[Out]

-3*x*e/(x*e^5*log(x) - (3*e^5*log(2) + 5*e^4)*x - e^5)

________________________________________________________________________________________

mupad [B]  time = 2.09, size = 20, normalized size = 0.91 \begin {gather*} \frac {3\,{\mathrm {e}}^{-4}}{5\,{\mathrm {e}}^{-1}+\ln \left (\frac {8}{x}\right )+\frac {1}{x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(1)*(3*x + 3))/(25*x^2*exp(3) + 10*x^2*exp(4)*log((8*exp(1/x))/x) + x^2*exp(5)*log((8*exp(1/x))/x)^2),
x)

[Out]

(3*exp(-4))/(5*exp(-1) + log(8/x) + 1/x)

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 19, normalized size = 0.86 \begin {gather*} \frac {3}{e^{4} \log {\left (\frac {8 e^{\frac {1}{x}}}{x} \right )} + 5 e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x**2*exp(1)**2*exp(3)*ln(8*exp(1/x)/x)**2+10*x**2*exp(1)*exp(3)*ln(8*exp(1/x)/x)+25*
x**2*exp(3)),x)

[Out]

3/(exp(4)*log(8*exp(1/x)/x) + 5*exp(3))

________________________________________________________________________________________