Optimal. Leaf size=32 \[ -\frac {e^{5+x \left (x+\log ^2(x)\right )}}{x}+\frac {1}{4} e^{-e^x} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 64, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 3, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {12, 6742, 2288} \begin {gather*} \frac {1}{4} e^{-e^x} x^2-\frac {e^{x^2+x \log ^2(x)+5} \left (2 x^2+x \log ^2(x)+2 x \log (x)\right )}{x^2 \left (2 x+\log ^2(x)+2 \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-e^x} \left (2 x^3-e^x x^4+e^{5+e^x+x^2+x \log ^2(x)} \left (4-8 x^2-8 x \log (x)-4 x \log ^2(x)\right )\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-e^{-e^x} x \left (-2+e^x x\right )-\frac {4 e^{5+x^2+x \log ^2(x)} \left (-1+2 x^2+2 x \log (x)+x \log ^2(x)\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int e^{-e^x} x \left (-2+e^x x\right ) \, dx\right )-\int \frac {e^{5+x^2+x \log ^2(x)} \left (-1+2 x^2+2 x \log (x)+x \log ^2(x)\right )}{x^2} \, dx\\ &=\frac {1}{4} e^{-e^x} x^2-\frac {e^{5+x^2+x \log ^2(x)} \left (2 x^2+2 x \log (x)+x \log ^2(x)\right )}{x^2 \left (2 x+2 \log (x)+\log ^2(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 34, normalized size = 1.06 \begin {gather*} \frac {1}{4} \left (-\frac {4 e^{5+x^2+x \log ^2(x)}}{x}+e^{-e^x} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 29, normalized size = 0.91 \begin {gather*} \frac {x^{3} e^{\left (-e^{x}\right )} - 4 \, e^{\left (x \log \relax (x)^{2} + x^{2} + 5\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 36, normalized size = 1.12 \begin {gather*} \frac {{\left (x^{3} e^{\left (x - e^{x}\right )} - 4 \, e^{\left (x \log \relax (x)^{2} + x^{2} + x + 5\right )}\right )} e^{\left (-x\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 0.91
method | result | size |
risch | \(\frac {x^{2} {\mathrm e}^{-{\mathrm e}^{x}}}{4}-\frac {{\mathrm e}^{x \ln \relax (x )^{2}+x^{2}+5}}{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 29, normalized size = 0.91 \begin {gather*} \frac {x^{3} e^{\left (-e^{x}\right )} - 4 \, e^{\left (x \log \relax (x)^{2} + x^{2} + 5\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{-{\mathrm {e}}^x}\,\left (\frac {x^4\,{\mathrm {e}}^x}{4}-\frac {x^3}{2}+\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{x^2+x\,{\ln \relax (x)}^2+5}\,\left (8\,x^2+4\,x\,{\ln \relax (x)}^2+8\,x\,\ln \relax (x)-4\right )}{4}\right )}{x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.89, size = 24, normalized size = 0.75 \begin {gather*} \frac {x^{2} e^{- e^{x}}}{4} - \frac {e^{x^{2} + x \log {\relax (x )}^{2} + 5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________