Optimal. Leaf size=21 \[ 2+\frac {4}{25} \log ^2\left (x-2 x \left (-x+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 1.18, antiderivative size = 366, normalized size of antiderivative = 17.43, number of steps used = 42, number of rules used = 14, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {1594, 2528, 2524, 2357, 2301, 2316, 2315, 2317, 2391, 2418, 2394, 2390, 2393, 2392} \begin {gather*} -\frac {8}{25} \text {Li}_2\left (-\frac {-2 x-\sqrt {3}+1}{2 \sqrt {3}}\right )-\frac {8}{25} \text {Li}_2\left (\frac {-2 x+\sqrt {3}+1}{2 \sqrt {3}}\right )+\frac {8}{25} \log (x) \log \left (-2 x^3+2 x^2+x\right )+\frac {8}{25} \log \left (4 x-2 \left (1-\sqrt {3}\right )\right ) \log \left (-2 x^3+2 x^2+x\right )+\frac {8}{25} \log \left (4 x-2 \left (1+\sqrt {3}\right )\right ) \log \left (-2 x^3+2 x^2+x\right )-\frac {4}{25} \log ^2\left (-2 \left (-2 x-\sqrt {3}+1\right )\right )-\frac {4}{25} \log ^2\left (-2 \left (-2 x+\sqrt {3}+1\right )\right )-\frac {4 \log ^2(x)}{25}-\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\frac {8}{25} \log \left (\frac {-2 x+\sqrt {3}+1}{2 \sqrt {3}}\right ) \log \left (4 x-2 \left (1-\sqrt {3}\right )\right )-\frac {8}{25} \log \left (-\frac {-2 x-\sqrt {3}+1}{2 \sqrt {3}}\right ) \log \left (4 x-2 \left (1+\sqrt {3}\right )\right )-\frac {8}{25} \log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (4 x-2 \left (1+\sqrt {3}\right )\right )-\frac {8}{25} \log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (4 x-2 \left (1+\sqrt {3}\right )\right )-\frac {8}{25} \log (x) \log \left (1-\frac {2 x}{1-\sqrt {3}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2301
Rule 2315
Rule 2316
Rule 2317
Rule 2357
Rule 2390
Rule 2391
Rule 2392
Rule 2393
Rule 2394
Rule 2418
Rule 2524
Rule 2528
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-8-32 x+48 x^2\right ) \log \left (x+2 x^2-2 x^3\right )}{x \left (-25-50 x+50 x^2\right )} \, dx\\ &=\int \left (\frac {8 \log \left (x+2 x^2-2 x^3\right )}{25 x}+\frac {16 (-1+2 x) \log \left (x+2 x^2-2 x^3\right )}{25 \left (-1-2 x+2 x^2\right )}\right ) \, dx\\ &=\frac {8}{25} \int \frac {\log \left (x+2 x^2-2 x^3\right )}{x} \, dx+\frac {16}{25} \int \frac {(-1+2 x) \log \left (x+2 x^2-2 x^3\right )}{-1-2 x+2 x^2} \, dx\\ &=\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \int \frac {\left (1+4 x-6 x^2\right ) \log (x)}{x+2 x^2-2 x^3} \, dx+\frac {16}{25} \int \left (\frac {2 \log \left (x+2 x^2-2 x^3\right )}{-2-2 \sqrt {3}+4 x}+\frac {2 \log \left (x+2 x^2-2 x^3\right )}{-2+2 \sqrt {3}+4 x}\right ) \, dx\\ &=\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \int \frac {\left (1+4 x-6 x^2\right ) \log (x)}{x \left (1+2 x-2 x^2\right )} \, dx+\frac {32}{25} \int \frac {\log \left (x+2 x^2-2 x^3\right )}{-2-2 \sqrt {3}+4 x} \, dx+\frac {32}{25} \int \frac {\log \left (x+2 x^2-2 x^3\right )}{-2+2 \sqrt {3}+4 x} \, dx\\ &=\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \int \left (\frac {\log (x)}{x}+\frac {2 (-1+2 x) \log (x)}{-1-2 x+2 x^2}\right ) \, dx-\frac {8}{25} \int \frac {\left (1+4 x-6 x^2\right ) \log \left (-2-2 \sqrt {3}+4 x\right )}{x+2 x^2-2 x^3} \, dx-\frac {8}{25} \int \frac {\left (1+4 x-6 x^2\right ) \log \left (-2+2 \sqrt {3}+4 x\right )}{x+2 x^2-2 x^3} \, dx\\ &=\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \int \frac {\log (x)}{x} \, dx-\frac {8}{25} \int \frac {\left (1+4 x-6 x^2\right ) \log \left (-2-2 \sqrt {3}+4 x\right )}{x \left (1+2 x-2 x^2\right )} \, dx-\frac {8}{25} \int \frac {\left (1+4 x-6 x^2\right ) \log \left (-2+2 \sqrt {3}+4 x\right )}{x \left (1+2 x-2 x^2\right )} \, dx-\frac {16}{25} \int \frac {(-1+2 x) \log (x)}{-1-2 x+2 x^2} \, dx\\ &=-\frac {4}{25} \log ^2(x)+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \int \left (\frac {\log \left (-2-2 \sqrt {3}+4 x\right )}{x}+\frac {2 (-1+2 x) \log \left (-2-2 \sqrt {3}+4 x\right )}{-1-2 x+2 x^2}\right ) \, dx-\frac {8}{25} \int \left (\frac {\log \left (-2+2 \sqrt {3}+4 x\right )}{x}+\frac {2 (-1+2 x) \log \left (-2+2 \sqrt {3}+4 x\right )}{-1-2 x+2 x^2}\right ) \, dx-\frac {16}{25} \int \left (\frac {2 \log (x)}{-2-2 \sqrt {3}+4 x}+\frac {2 \log (x)}{-2+2 \sqrt {3}+4 x}\right ) \, dx\\ &=-\frac {4}{25} \log ^2(x)+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \int \frac {\log \left (-2-2 \sqrt {3}+4 x\right )}{x} \, dx-\frac {8}{25} \int \frac {\log \left (-2+2 \sqrt {3}+4 x\right )}{x} \, dx-\frac {16}{25} \int \frac {(-1+2 x) \log \left (-2-2 \sqrt {3}+4 x\right )}{-1-2 x+2 x^2} \, dx-\frac {16}{25} \int \frac {(-1+2 x) \log \left (-2+2 \sqrt {3}+4 x\right )}{-1-2 x+2 x^2} \, dx-\frac {32}{25} \int \frac {\log (x)}{-2-2 \sqrt {3}+4 x} \, dx-\frac {32}{25} \int \frac {\log (x)}{-2+2 \sqrt {3}+4 x} \, dx\\ &=-\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\frac {4 \log ^2(x)}{25}-\frac {8}{25} \log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log (x) \log \left (1-\frac {2 x}{1-\sqrt {3}}\right )+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {16}{25} \int \left (\frac {2 \log \left (-2-2 \sqrt {3}+4 x\right )}{-2-2 \sqrt {3}+4 x}+\frac {2 \log \left (-2-2 \sqrt {3}+4 x\right )}{-2+2 \sqrt {3}+4 x}\right ) \, dx-\frac {16}{25} \int \left (\frac {2 \log \left (-2+2 \sqrt {3}+4 x\right )}{-2-2 \sqrt {3}+4 x}+\frac {2 \log \left (-2+2 \sqrt {3}+4 x\right )}{-2+2 \sqrt {3}+4 x}\right ) \, dx-\frac {32}{25} \int \frac {\log \left (-\frac {4 x}{-2-2 \sqrt {3}}\right )}{-2-2 \sqrt {3}+4 x} \, dx+\frac {32}{25} \int \frac {\log \left (\frac {4 x}{2+2 \sqrt {3}}\right )}{-2-2 \sqrt {3}+4 x} \, dx\\ &=-\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\frac {4 \log ^2(x)}{25}-\frac {8}{25} \log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log (x) \log \left (1-\frac {2 x}{1-\sqrt {3}}\right )+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {32}{25} \int \frac {\log \left (-2-2 \sqrt {3}+4 x\right )}{-2-2 \sqrt {3}+4 x} \, dx-\frac {32}{25} \int \frac {\log \left (-2-2 \sqrt {3}+4 x\right )}{-2+2 \sqrt {3}+4 x} \, dx-\frac {32}{25} \int \frac {\log \left (-2+2 \sqrt {3}+4 x\right )}{-2-2 \sqrt {3}+4 x} \, dx-\frac {32}{25} \int \frac {\log \left (-2+2 \sqrt {3}+4 x\right )}{-2+2 \sqrt {3}+4 x} \, dx\\ &=-\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\frac {4 \log ^2(x)}{25}-\frac {8}{25} \log \left (\frac {1+\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (-\frac {1-\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log (x) \log \left (1-\frac {2 x}{1-\sqrt {3}}\right )+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-2-2 \sqrt {3}+4 x\right )-\frac {8}{25} \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-2+2 \sqrt {3}+4 x\right )+\frac {32}{25} \int \frac {\log \left (\frac {4 \left (-2-2 \sqrt {3}+4 x\right )}{4 \left (-2-2 \sqrt {3}\right )-4 \left (-2+2 \sqrt {3}\right )}\right )}{-2+2 \sqrt {3}+4 x} \, dx+\frac {32}{25} \int \frac {\log \left (\frac {4 \left (-2+2 \sqrt {3}+4 x\right )}{-4 \left (-2-2 \sqrt {3}\right )+4 \left (-2+2 \sqrt {3}\right )}\right )}{-2-2 \sqrt {3}+4 x} \, dx\\ &=-\frac {4}{25} \log ^2\left (-2 \left (1-\sqrt {3}-2 x\right )\right )-\frac {4}{25} \log ^2\left (-2 \left (1+\sqrt {3}-2 x\right )\right )-\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\frac {4 \log ^2(x)}{25}-\frac {8}{25} \log \left (\frac {1+\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (-\frac {1-\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log (x) \log \left (1-\frac {2 x}{1-\sqrt {3}}\right )+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {4 x}{4 \left (-2-2 \sqrt {3}\right )-4 \left (-2+2 \sqrt {3}\right )}\right )}{x} \, dx,x,-2+2 \sqrt {3}+4 x\right )+\frac {8}{25} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {4 x}{-4 \left (-2-2 \sqrt {3}\right )+4 \left (-2+2 \sqrt {3}\right )}\right )}{x} \, dx,x,-2-2 \sqrt {3}+4 x\right )\\ &=-\frac {4}{25} \log ^2\left (-2 \left (1-\sqrt {3}-2 x\right )\right )-\frac {4}{25} \log ^2\left (-2 \left (1+\sqrt {3}-2 x\right )\right )-\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\frac {4 \log ^2(x)}{25}-\frac {8}{25} \log \left (\frac {1+\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (-\frac {1-\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {8}{25} \log (x) \log \left (1-\frac {2 x}{1-\sqrt {3}}\right )+\frac {8}{25} \log (x) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\frac {8}{25} \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )-\frac {8}{25} \text {Li}_2\left (-\frac {1-\sqrt {3}-2 x}{2 \sqrt {3}}\right )-\frac {8}{25} \text {Li}_2\left (\frac {1+\sqrt {3}-2 x}{2 \sqrt {3}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.17, size = 293, normalized size = 13.95 \begin {gather*} \frac {8}{25} \left (-\log \left (-2 \left (1-\sqrt {3}\right )\right ) \log (x)-\log \left (\frac {1-\sqrt {3}-2 x}{1-\sqrt {3}}\right ) \log (x)-\frac {\log ^2(x)}{2}-\frac {1}{2} \log ^2\left (-2 \left (1-\sqrt {3}\right )+4 x\right )-\log \left (4 \sqrt {3}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\log \left (\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\log \left (-\frac {1-\sqrt {3}-2 x}{2 \sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\log \left (\frac {2 x}{1+\sqrt {3}}\right ) \log \left (-2 \left (1+\sqrt {3}\right )+4 x\right )-\frac {1}{2} \log ^2\left (-2 \left (1+\sqrt {3}\right )+4 x\right )+\log (x) \log \left (x+2 x^2-2 x^3\right )+\log \left (-2 \left (1-\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )+\log \left (-2 \left (1+\sqrt {3}\right )+4 x\right ) \log \left (x+2 x^2-2 x^3\right )\right ) \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 17, normalized size = 0.81 \begin {gather*} \frac {4}{25} \, \log \left (-2 \, x^{3} + 2 \, x^{2} + x\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {8 \, {\left (6 \, x^{2} - 4 \, x - 1\right )} \log \left (-2 \, x^{3} + 2 \, x^{2} + x\right )}{25 \, {\left (2 \, x^{3} - 2 \, x^{2} - x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 18, normalized size = 0.86
method | result | size |
norman | \(\frac {4 \ln \left (-2 x^{3}+2 x^{2}+x \right )^{2}}{25}\) | \(18\) |
risch | \(\frac {4 \ln \left (-2 x^{3}+2 x^{2}+x \right )^{2}}{25}\) | \(18\) |
default | \(\frac {8 \ln \relax (x ) \ln \left (-2 x^{3}+2 x^{2}+x \right )}{25}-\frac {4 \ln \relax (x )^{2}}{25}-\frac {8 \ln \relax (x ) \ln \left (\frac {1+\sqrt {3}-2 x}{1+\sqrt {3}}\right )}{25}-\frac {8 \ln \relax (x ) \ln \left (\frac {-1+\sqrt {3}+2 x}{\sqrt {3}-1}\right )}{25}-\frac {8 \dilog \left (\frac {1+\sqrt {3}-2 x}{1+\sqrt {3}}\right )}{25}-\frac {8 \dilog \left (\frac {-1+\sqrt {3}+2 x}{\sqrt {3}-1}\right )}{25}+\frac {8 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (2 \textit {\_Z}^{2}-2 \textit {\_Z} -1\right )}{\sum }\left (\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (-2 x^{3}+2 x^{2}+x \right )-\frac {\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right )^{2}}{2}-\dilog \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )-\dilog \left (\frac {x +\underline {\hspace {1.25 ex}}\alpha -1}{2 \underline {\hspace {1.25 ex}}\alpha -1}\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {x +\underline {\hspace {1.25 ex}}\alpha -1}{2 \underline {\hspace {1.25 ex}}\alpha -1}\right )\right )\right )}{25}\) | \(210\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 37, normalized size = 1.76 \begin {gather*} \frac {4}{25} \, \log \left (-2 \, x^{2} + 2 \, x + 1\right )^{2} + \frac {8}{25} \, \log \left (-2 \, x^{2} + 2 \, x + 1\right ) \log \relax (x) + \frac {4}{25} \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 17, normalized size = 0.81 \begin {gather*} \frac {4\,{\ln \left (x\,\left (-2\,x^2+2\,x+1\right )\right )}^2}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.81 \begin {gather*} \frac {4 \log {\left (- 2 x^{3} + 2 x^{2} + x \right )}^{2}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________