Optimal. Leaf size=24 \[ \frac {\left (\left (e^x-x\right )^2+x\right )^2}{\left (4+e^x-x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^{5 x}+e^{4 x} (14-8 x)+8 x+24 x^2+14 x^3-2 x^4+e^{3 x} \left (-14-40 x+12 x^2\right )+e^{2 x} \left (8+58 x+36 x^2-8 x^3\right )+e^x \left (-30 x-60 x^2-8 x^3+2 x^4\right )}{64+e^{3 x}+e^{2 x} (12-3 x)-48 x+12 x^2-x^3+e^x \left (48-24 x+3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (e^{5 x}+e^{4 x} (7-4 x)+e^{3 x} \left (-7-20 x+6 x^2\right )+e^{2 x} \left (4+29 x+18 x^2-4 x^3\right )+x \left (4+12 x+7 x^2-x^3\right )+e^x x \left (-15-30 x-4 x^2+x^3\right )\right )}{\left (4+e^x-x\right )^3} \, dx\\ &=2 \int \frac {e^{5 x}+e^{4 x} (7-4 x)+e^{3 x} \left (-7-20 x+6 x^2\right )+e^{2 x} \left (4+29 x+18 x^2-4 x^3\right )+x \left (4+12 x+7 x^2-x^3\right )+e^x x \left (-15-30 x-4 x^2+x^3\right )}{\left (4+e^x-x\right )^3} \, dx\\ &=2 \int \left (5+e^{2 x}+x-e^x (5+x)+\frac {8 (15+x)}{4+e^x-x}-\frac {(-5+x) (16+x)^2}{\left (4+e^x-x\right )^3}+\frac {-880+57 x+7 x^2}{\left (4+e^x-x\right )^2}\right ) \, dx\\ &=10 x+x^2+2 \int e^{2 x} \, dx-2 \int e^x (5+x) \, dx-2 \int \frac {(-5+x) (16+x)^2}{\left (4+e^x-x\right )^3} \, dx+2 \int \frac {-880+57 x+7 x^2}{\left (4+e^x-x\right )^2} \, dx+16 \int \frac {15+x}{4+e^x-x} \, dx\\ &=e^{2 x}+10 x+x^2-2 e^x (5+x)+2 \int e^x \, dx+2 \int \left (-\frac {880}{\left (4+e^x-x\right )^2}+\frac {57 x}{\left (4+e^x-x\right )^2}+\frac {7 x^2}{\left (4+e^x-x\right )^2}\right ) \, dx-2 \int \left (-\frac {1280}{\left (4+e^x-x\right )^3}+\frac {96 x}{\left (4+e^x-x\right )^3}+\frac {27 x^2}{\left (4+e^x-x\right )^3}+\frac {x^3}{\left (4+e^x-x\right )^3}\right ) \, dx+16 \int \left (\frac {15}{4+e^x-x}+\frac {x}{4+e^x-x}\right ) \, dx\\ &=2 e^x+e^{2 x}+10 x+x^2-2 e^x (5+x)-2 \int \frac {x^3}{\left (4+e^x-x\right )^3} \, dx+14 \int \frac {x^2}{\left (4+e^x-x\right )^2} \, dx+16 \int \frac {x}{4+e^x-x} \, dx-54 \int \frac {x^2}{\left (4+e^x-x\right )^3} \, dx+114 \int \frac {x}{\left (4+e^x-x\right )^2} \, dx-192 \int \frac {x}{\left (4+e^x-x\right )^3} \, dx+240 \int \frac {1}{4+e^x-x} \, dx-1760 \int \frac {1}{\left (4+e^x-x\right )^2} \, dx+2560 \int \frac {1}{\left (4+e^x-x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 51, normalized size = 2.12 \begin {gather*} e^{2 x}+10 x+x^2-2 e^x (4+x)-\frac {16 (16+x)}{4+e^x-x}+\frac {(16+x)^2}{\left (4+e^x-x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 80, normalized size = 3.33 \begin {gather*} \frac {x^{4} + 2 \, x^{3} - 47 \, x^{2} - 4 \, x e^{\left (3 \, x\right )} + 2 \, {\left (3 \, x^{2} + x - 24\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{3} + x^{2} - 24 \, x + 96\right )} e^{x} + 384 \, x + e^{\left (4 \, x\right )} - 768}{x^{2} - 2 \, {\left (x - 4\right )} e^{x} - 8 \, x + e^{\left (2 \, x\right )} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 98, normalized size = 4.08 \begin {gather*} \frac {x^{4} - 4 \, x^{3} e^{x} + 2 \, x^{3} + 6 \, x^{2} e^{\left (2 \, x\right )} - 4 \, x^{2} e^{x} - 47 \, x^{2} - 4 \, x e^{\left (3 \, x\right )} + 2 \, x e^{\left (2 \, x\right )} + 96 \, x e^{x} + 384 \, x + e^{\left (4 \, x\right )} - 48 \, e^{\left (2 \, x\right )} - 384 \, e^{x} - 768}{x^{2} - 2 \, x e^{x} - 8 \, x + e^{\left (2 \, x\right )} + 8 \, e^{x} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 49, normalized size = 2.04
method | result | size |
risch | \(x^{2}+{\mathrm e}^{2 x}+10 x +\left (-2 x -8\right ) {\mathrm e}^{x}+\frac {17 x^{2}-16 \,{\mathrm e}^{x} x +224 x -256 \,{\mathrm e}^{x}-768}{\left (x -{\mathrm e}^{x}-4\right )^{2}}\) | \(49\) |
norman | \(\frac {x^{4}+{\mathrm e}^{4 x}+x^{2}+2 x^{3}+2 x \,{\mathrm e}^{2 x}-4 x \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{x} x^{2}-4 \,{\mathrm e}^{x} x^{3}+6 \,{\mathrm e}^{2 x} x^{2}}{\left (x -{\mathrm e}^{x}-4\right )^{2}}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.77, size = 80, normalized size = 3.33 \begin {gather*} \frac {x^{4} + 2 \, x^{3} - 47 \, x^{2} - 4 \, x e^{\left (3 \, x\right )} + 2 \, {\left (3 \, x^{2} + x - 24\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{3} + x^{2} - 24 \, x + 96\right )} e^{x} + 384 \, x + e^{\left (4 \, x\right )} - 768}{x^{2} - 2 \, {\left (x - 4\right )} e^{x} - 8 \, x + e^{\left (2 \, x\right )} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.08, size = 26, normalized size = 1.08 \begin {gather*} \frac {{\left (x+{\mathrm {e}}^{2\,x}-2\,x\,{\mathrm {e}}^x+x^2\right )}^2}{{\left ({\mathrm {e}}^x-x+4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 63, normalized size = 2.62 \begin {gather*} x^{2} + 10 x + \left (- 2 x - 8\right ) e^{x} + \frac {17 x^{2} + 224 x + \left (- 16 x - 256\right ) e^{x} - 768}{x^{2} - 8 x + \left (8 - 2 x\right ) e^{x} + e^{2 x} + 16} + e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________