Optimal. Leaf size=20 \[ \frac {256 x^5}{\left (x+\left (e^3+x\right )^2\right ) \log ^4(2)} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 27, normalized size of antiderivative = 1.35, number of steps used = 6, number of rules used = 5, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {6, 12, 1594, 1680, 1590} \begin {gather*} \frac {256 x^5}{\left (x^2+\left (1+2 e^3\right ) x+e^6\right ) \log ^4(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1590
Rule 1594
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1280 e^6 x^4+\left (1024+2048 e^3\right ) x^5+768 x^6}{\left (e^{12}+4 e^9 x+x^2+2 x^3+x^4+e^6 \left (2 x+6 x^2\right )+e^3 \left (4 x^2+4 x^3\right )\right ) \log ^4(2)} \, dx\\ &=\frac {\int \frac {1280 e^6 x^4+\left (1024+2048 e^3\right ) x^5+768 x^6}{e^{12}+4 e^9 x+x^2+2 x^3+x^4+e^6 \left (2 x+6 x^2\right )+e^3 \left (4 x^2+4 x^3\right )} \, dx}{\log ^4(2)}\\ &=\frac {\int \frac {x^4 \left (1280 e^6+\left (1024+2048 e^3\right ) x+768 x^2\right )}{e^{12}+4 e^9 x+x^2+2 x^3+x^4+e^6 \left (2 x+6 x^2\right )+e^3 \left (4 x^2+4 x^3\right )} \, dx}{\log ^4(2)}\\ &=\frac {\operatorname {Subst}\left (\int \frac {64 \left (1+2 e^3-2 x\right )^4 \left (-5 \left (1+4 e^3\right )+4 \left (1+2 e^3\right ) x+12 x^2\right )}{\left (1+4 e^3-4 x^2\right )^2} \, dx,x,\frac {1}{4} \left (2+4 e^3\right )+x\right )}{\log ^4(2)}\\ &=\frac {64 \operatorname {Subst}\left (\int \frac {\left (1+2 e^3-2 x\right )^4 \left (-5 \left (1+4 e^3\right )+4 \left (1+2 e^3\right ) x+12 x^2\right )}{\left (1+4 e^3-4 x^2\right )^2} \, dx,x,\frac {1}{4} \left (2+4 e^3\right )+x\right )}{\log ^4(2)}\\ &=\frac {256 x^5}{\left (e^6+\left (1+2 e^3\right ) x+x^2\right ) \log ^4(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 85, normalized size = 4.25 \begin {gather*} \frac {256 \left (4 e^{15}+2 e^3 x (4+3 x)+2 e^{12} (5+4 x)+e^9 \left (6+24 x+4 x^2\right )+e^6 \left (1+22 x+10 x^2\right )+x \left (1+x+x^4\right )\right )}{\left (e^6+x+2 e^3 x+x^2\right ) \log ^4(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 81, normalized size = 4.05 \begin {gather*} \frac {256 \, {\left (x^{5} + x^{2} + 2 \, {\left (4 \, x + 5\right )} e^{12} + 2 \, {\left (2 \, x^{2} + 12 \, x + 3\right )} e^{9} + {\left (10 \, x^{2} + 22 \, x + 1\right )} e^{6} + 2 \, {\left (3 \, x^{2} + 4 \, x\right )} e^{3} + x + 4 \, e^{15}\right )}}{{\left (x^{2} + 2 \, x e^{3} + x + e^{6}\right )} \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.45, size = 61, normalized size = 3.05 \begin {gather*} \frac {64 \, {\left (4 \, x^{3} - 8 \, x^{2} e^{3} - 4 \, x^{2} + 12 \, x e^{6} + 16 \, x e^{3} + 4 \, x + 297749522100 \, \log \left (x + 25.0950384229000\right ) - 297749578061 \, \log \left (x + 25.0950235980000\right ) - 4.43056261903000 \times 10^{10} \, \log \left (x + 16.0760482101000\right ) + 44305625602 \, \log \left (x + 16.0760374618000\right )\right )}}{\log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 26, normalized size = 1.30
method | result | size |
gosper | \(\frac {256 x^{5}}{\ln \relax (2)^{4} \left ({\mathrm e}^{6}+2 x \,{\mathrm e}^{3}+x^{2}+x \right )}\) | \(26\) |
norman | \(\frac {256 x^{5}}{\ln \relax (2)^{4} \left ({\mathrm e}^{6}+2 x \,{\mathrm e}^{3}+x^{2}+x \right )}\) | \(26\) |
risch | \(\frac {768 x \,{\mathrm e}^{6}}{\ln \relax (2)^{4}}-\frac {512 x^{2} {\mathrm e}^{3}}{\ln \relax (2)^{4}}+\frac {256 x^{3}}{\ln \relax (2)^{4}}+\frac {1024 x \,{\mathrm e}^{3}}{\ln \relax (2)^{4}}-\frac {256 x^{2}}{\ln \relax (2)^{4}}+\frac {256 x}{\ln \relax (2)^{4}}+\frac {\left (1280 \,{\mathrm e}^{12}+5120 \,{\mathrm e}^{9}+5376 \,{\mathrm e}^{6}+2048 \,{\mathrm e}^{3}+256\right ) x +1024 \,{\mathrm e}^{15}+2560 \,{\mathrm e}^{12}+1536 \,{\mathrm e}^{9}+256 \,{\mathrm e}^{6}}{\ln \relax (2)^{4} \left ({\mathrm e}^{6}+2 x \,{\mathrm e}^{3}+x^{2}+x \right )}\) | \(112\) |
default | \(\frac {768 x \,{\mathrm e}^{6}-512 x^{2} {\mathrm e}^{3}+256 x^{3}+1024 x \,{\mathrm e}^{3}-256 x^{2}+256 x +128 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+\left (4 \,{\mathrm e}^{3}+2\right ) \textit {\_Z}^{3}+\left (6 \,{\mathrm e}^{6}+4 \,{\mathrm e}^{3}+1\right ) \textit {\_Z}^{2}+\left (2 \,{\mathrm e}^{6}+4 \,{\mathrm e}^{9}\right ) \textit {\_Z} +{\mathrm e}^{12}\right )}{\sum }\frac {\left (\left (-5 \,{\mathrm e}^{12}-20 \,{\mathrm e}^{9}-21 \,{\mathrm e}^{6}-8 \,{\mathrm e}^{3}-1\right ) \textit {\_R}^{2}+2 \left (-10 \,{\mathrm e}^{12}-4 \,{\mathrm e}^{15}-6 \,{\mathrm e}^{9}-{\mathrm e}^{6}\right ) \textit {\_R} -3 \,{\mathrm e}^{12} {\mathrm e}^{6}-4 \,{\mathrm e}^{12} {\mathrm e}^{3}-{\mathrm e}^{12}\right ) \ln \left (x -\textit {\_R} \right )}{2 \,{\mathrm e}^{9}+6 \textit {\_R} \,{\mathrm e}^{6}+6 \textit {\_R}^{2} {\mathrm e}^{3}+2 \textit {\_R}^{3}+{\mathrm e}^{6}+4 \textit {\_R} \,{\mathrm e}^{3}+3 \textit {\_R}^{2}+\textit {\_R}}\right )}{\ln \relax (2)^{4}}\) | \(191\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 85, normalized size = 4.25 \begin {gather*} \frac {256 \, {\left (x^{3} - x^{2} {\left (2 \, e^{3} + 1\right )} + x {\left (3 \, e^{6} + 4 \, e^{3} + 1\right )} + \frac {x {\left (5 \, e^{12} + 20 \, e^{9} + 21 \, e^{6} + 8 \, e^{3} + 1\right )} + 4 \, e^{15} + 10 \, e^{12} + 6 \, e^{9} + e^{6}}{x^{2} + x {\left (2 \, e^{3} + 1\right )} + e^{6}}\right )}}{\log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.32, size = 170, normalized size = 8.50 \begin {gather*} \frac {256\,x^3}{{\ln \relax (2)}^4}+\frac {256\,{\mathrm {e}}^6+1536\,{\mathrm {e}}^9+2560\,{\mathrm {e}}^{12}+1024\,{\mathrm {e}}^{15}+x\,\left (2048\,{\mathrm {e}}^3+5376\,{\mathrm {e}}^6+5120\,{\mathrm {e}}^9+1280\,{\mathrm {e}}^{12}+256\right )}{{\ln \relax (2)}^4\,x^2+\left (2\,{\mathrm {e}}^3\,{\ln \relax (2)}^4+{\ln \relax (2)}^4\right )\,x+{\mathrm {e}}^6\,{\ln \relax (2)}^4}-x^2\,\left (\frac {384\,\left (4\,{\mathrm {e}}^3+2\right )}{{\ln \relax (2)}^4}-\frac {2048\,{\mathrm {e}}^3+1024}{2\,{\ln \relax (2)}^4}\right )+x\,\left (\left (4\,{\mathrm {e}}^3+2\right )\,\left (\frac {768\,\left (4\,{\mathrm {e}}^3+2\right )}{{\ln \relax (2)}^4}-\frac {2048\,{\mathrm {e}}^3+1024}{{\ln \relax (2)}^4}\right )-\frac {768\,\left (4\,{\mathrm {e}}^3+6\,{\mathrm {e}}^6+1\right )}{{\ln \relax (2)}^4}+\frac {1280\,{\mathrm {e}}^6}{{\ln \relax (2)}^4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.32, size = 138, normalized size = 6.90 \begin {gather*} \frac {256 x^{3}}{\log {\relax (2 )}^{4}} + x^{2} \left (- \frac {512 e^{3}}{\log {\relax (2 )}^{4}} - \frac {256}{\log {\relax (2 )}^{4}}\right ) + x \left (\frac {256}{\log {\relax (2 )}^{4}} + \frac {1024 e^{3}}{\log {\relax (2 )}^{4}} + \frac {768 e^{6}}{\log {\relax (2 )}^{4}}\right ) + \frac {x \left (256 + 2048 e^{3} + 5376 e^{6} + 5120 e^{9} + 1280 e^{12}\right ) + 256 e^{6} + 1536 e^{9} + 2560 e^{12} + 1024 e^{15}}{x^{2} \log {\relax (2 )}^{4} + x \left (\log {\relax (2 )}^{4} + 2 e^{3} \log {\relax (2 )}^{4}\right ) + e^{6} \log {\relax (2 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________