Optimal. Leaf size=21 \[ -e^{-x} \log \left (5+e-e^x\right )+\log (\log (\log (x))) \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 8, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6688, 2282, 36, 31, 29, 2194, 2554, 2302} \begin {gather*} \log (\log (\log (x)))-e^{-x} \log \left (-e^x+5+e\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 2194
Rule 2282
Rule 2302
Rule 2554
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{5 \left (1+\frac {e}{5}\right )-e^x}+e^{-x} \log \left (5 \left (1+\frac {e}{5}\right )-e^x\right )+\frac {1}{x \log (x) \log (\log (x))}\right ) \, dx\\ &=\int \frac {1}{5 \left (1+\frac {e}{5}\right )-e^x} \, dx+\int e^{-x} \log \left (5 \left (1+\frac {e}{5}\right )-e^x\right ) \, dx+\int \frac {1}{x \log (x) \log (\log (x))} \, dx\\ &=-e^{-x} \log \left (5+e-e^x\right )-\int \frac {1}{5 \left (1+\frac {e}{5}\right )-e^x} \, dx+\operatorname {Subst}\left (\int \frac {1}{(5+e-x) x} \, dx,x,e^x\right )+\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,\log (x)\right )\\ &=-e^{-x} \log \left (5+e-e^x\right )+\frac {\operatorname {Subst}\left (\int \frac {1}{5+e-x} \, dx,x,e^x\right )}{5+e}+\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{5+e}+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (\log (x))\right )-\operatorname {Subst}\left (\int \frac {1}{(5+e-x) x} \, dx,x,e^x\right )\\ &=\frac {x}{5+e}-e^{-x} \log \left (5+e-e^x\right )-\frac {\log \left (5+e-e^x\right )}{5+e}+\log (\log (\log (x)))-\frac {\operatorname {Subst}\left (\int \frac {1}{5+e-x} \, dx,x,e^x\right )}{5+e}-\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{5+e}\\ &=-e^{-x} \log \left (5+e-e^x\right )+\log (\log (\log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 21, normalized size = 1.00 \begin {gather*} -e^{-x} \log \left (5+e-e^x\right )+\log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 24, normalized size = 1.14 \begin {gather*} {\left (e^{x} \log \left (\log \left (\log \relax (x)\right )\right ) - \log \left (e - e^{x} + 5\right )\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (e + 5\right )} e^{x} + {\left (x e^{x} \log \relax (x) + {\left (x e - x e^{x} + 5 \, x\right )} \log \relax (x) \log \left (e - e^{x} + 5\right )\right )} \log \left (\log \relax (x)\right ) - e^{\left (2 \, x\right )}}{{\left (x e^{\left (2 \, x\right )} - {\left (x e + 5 \, x\right )} e^{x}\right )} \log \relax (x) \log \left (\log \relax (x)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 1.00
method | result | size |
risch | \(\ln \left (\ln \left (\ln \relax (x )\right )\right )-\ln \left (-{\mathrm e}^{x}+{\mathrm e}+5\right ) {\mathrm e}^{-x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 20, normalized size = 0.95 \begin {gather*} -e^{\left (-x\right )} \log \left (e - e^{x} + 5\right ) + \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (\mathrm {e}+5\right )-{\mathrm {e}}^{2\,x}+\ln \left (\ln \relax (x)\right )\,\left (x\,{\mathrm {e}}^x\,\ln \relax (x)+\ln \left (\mathrm {e}-{\mathrm {e}}^x+5\right )\,\ln \relax (x)\,\left (5\,x+x\,\mathrm {e}-x\,{\mathrm {e}}^x\right )\right )}{\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (x\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^x\,\left (5\,x+x\,\mathrm {e}\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.41, size = 19, normalized size = 0.90 \begin {gather*} \log {\left (\log {\left (\log {\relax (x )} \right )} \right )} - e^{- x} \log {\left (- e^{x} + e + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________