Optimal. Leaf size=33 \[ x^2 \left (e^{\frac {e^{-x+\frac {1}{2} (-5-x+\log (4+x))}}{x}+x}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 x^2+6 x^3+e^{\frac {e^{\frac {1}{2} (-5-3 x+\log (4+x))}+x^2}{x}} \left (16 x+12 x^2+2 x^3+e^{\frac {1}{2} (-5-3 x+\log (4+x))} \left (-8-13 x-3 x^2\right )\right )}{8+2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (x \left (2 e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}}+3 x+e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}} x\right )-\frac {e^{-\frac {5}{2}-\frac {x}{2}+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}} \left (8+13 x+3 x^2\right )}{2 \sqrt {4+x}}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {e^{-\frac {5}{2}-\frac {x}{2}+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}} \left (8+13 x+3 x^2\right )}{\sqrt {4+x}} \, dx\right )+\int x \left (2 e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}}+3 x+e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}} x\right ) \, dx\\ &=\int \left (3 x^2+e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}} x (2+x)\right ) \, dx-\operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} \left (4-11 x^2+3 x^4\right ) \, dx,x,\sqrt {4+x}\right )\\ &=x^3+\int e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}} x (2+x) \, dx-\operatorname {Subst}\left (\int \left (4 e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}}-11 e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^2+3 e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^4\right ) \, dx,x,\sqrt {4+x}\right )\\ &=x^3+2 \operatorname {Subst}\left (\int e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x \left (8-6 x^2+x^4\right ) \, dx,x,\sqrt {4+x}\right )-3 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^4 \, dx,x,\sqrt {4+x}\right )-4 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} \, dx,x,\sqrt {4+x}\right )+11 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^2 \, dx,x,\sqrt {4+x}\right )\\ &=x^3+2 \operatorname {Subst}\left (\int \left (8 e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x-6 e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^3+e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^5\right ) \, dx,x,\sqrt {4+x}\right )-3 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^4 \, dx,x,\sqrt {4+x}\right )-4 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} \, dx,x,\sqrt {4+x}\right )+11 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^2 \, dx,x,\sqrt {4+x}\right )\\ &=x^3+2 \operatorname {Subst}\left (\int e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^5 \, dx,x,\sqrt {4+x}\right )-3 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^4 \, dx,x,\sqrt {4+x}\right )-4 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} \, dx,x,\sqrt {4+x}\right )+11 \operatorname {Subst}\left (\int e^{-\frac {1}{2}-\frac {x^2}{2}+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^2 \, dx,x,\sqrt {4+x}\right )-12 \operatorname {Subst}\left (\int e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x^3 \, dx,x,\sqrt {4+x}\right )+16 \operatorname {Subst}\left (\int e^{-4+x^2+\frac {e^{\frac {7}{2}-\frac {3 x^2}{2}} x}{-4+x^2}} x \, dx,x,\sqrt {4+x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.58, size = 32, normalized size = 0.97 \begin {gather*} x^2 \left (e^{x+\frac {e^{-\frac {5}{2}-\frac {3 x}{2}} \sqrt {4+x}}{x}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 29, normalized size = 0.88 \begin {gather*} x^{3} + x^{2} e^{\left (\frac {x^{2} + e^{\left (-\frac {3}{2} \, x + \frac {1}{2} \, \log \left (x + 4\right ) - \frac {5}{2}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {6 \, x^{3} + 24 \, x^{2} + {\left (2 \, x^{3} + 12 \, x^{2} - {\left (3 \, x^{2} + 13 \, x + 8\right )} e^{\left (-\frac {3}{2} \, x + \frac {1}{2} \, \log \left (x + 4\right ) - \frac {5}{2}\right )} + 16 \, x\right )} e^{\left (\frac {x^{2} + e^{\left (-\frac {3}{2} \, x + \frac {1}{2} \, \log \left (x + 4\right ) - \frac {5}{2}\right )}}{x}\right )}}{2 \, {\left (x + 4\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.87, size = 30, normalized size = 0.91
method | result | size |
risch | \(x^{3}+{\mathrm e}^{\frac {\sqrt {4+x}\, {\mathrm e}^{-\frac {5}{2}-\frac {3 x}{2}}+x^{2}}{x}} x^{2}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.62, size = 27, normalized size = 0.82 \begin {gather*} x^{3} + x^{2} e^{\left (x + \frac {\sqrt {x + 4} e^{\left (-\frac {3}{2} \, x - \frac {5}{2}\right )}}{x} + \frac {1}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 26, normalized size = 0.79 \begin {gather*} x^3+x^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{-\frac {5}{2}}\,\sqrt {x+4}}{x\,{\left ({\mathrm {e}}^x\right )}^{3/2}}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________