Optimal. Leaf size=23 \[ \frac {1}{16} e^{2 e^{80 e^{4+x+x^2}}} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 36, normalized size of antiderivative = 1.57, number of steps used = 2, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 2288} \begin {gather*} \frac {e^{2 e^{80 e^{x^2+x+4}}} \left (2 x^3+x^2\right )}{16 (2 x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int e^{2 e^{80 e^{4+x+x^2}}} \left (x+e^{4+80 e^{4+x+x^2}+x+x^2} \left (80 x^2+160 x^3\right )\right ) \, dx\\ &=\frac {e^{2 e^{80 e^{4+x+x^2}}} \left (x^2+2 x^3\right )}{16 (1+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{16} e^{2 e^{80 e^{4+x+x^2}}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 18, normalized size = 0.78 \begin {gather*} \frac {1}{16} \, x^{2} e^{\left (2 \, e^{\left (80 \, e^{\left (x^{2} + x + 4\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{8} \, {\left (80 \, {\left (2 \, x^{3} + x^{2}\right )} e^{\left (x^{2} + x + 80 \, e^{\left (x^{2} + x + 4\right )} + 4\right )} + x\right )} e^{\left (2 \, e^{\left (80 \, e^{\left (x^{2} + x + 4\right )}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.83
method | result | size |
risch | \(\frac {x^{2} {\mathrm e}^{2 \,{\mathrm e}^{80 \,{\mathrm e}^{x^{2}+x +4}}}}{16}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 18, normalized size = 0.78 \begin {gather*} \frac {1}{16} \, x^{2} e^{\left (2 \, e^{\left (80 \, e^{\left (x^{2} + x + 4\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 19, normalized size = 0.83 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^{80\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^4\,{\mathrm {e}}^x}}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 116.63, size = 20, normalized size = 0.87 \begin {gather*} \frac {x^{2} e^{2 e^{80 e^{4} e^{x^{2} + x}}}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________