3.32.41 (32+2x216x3+24x4)log(16x2+4x34x4x)+(16x2+4x34x4)log2(16x2+4x34x4x)64x2+4x416x5+16x6dx

Optimal. Leaf size=29 log2(16xx+4x(xx2))4x

________________________________________________________________________________________

Rubi [A]  time = 5.67, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 51, number of rules used = 19, integrand size = 107, number of rulesintegrand size = 0.178, Rules used = {6741, 12, 6742, 2528, 2525, 1680, 1662, 1107, 618, 204, 1127, 1161, 1164, 628, 1106, 1094, 634, 1673, 1169} log2(4x44x3+x2+16x)4x

Antiderivative was successfully verified.

[In]

Int[((-32 + 2*x^2 - 16*x^3 + 24*x^4)*Log[(-16 - x^2 + 4*x^3 - 4*x^4)/x] + (-16 - x^2 + 4*x^3 - 4*x^4)*Log[(-16
 - x^2 + 4*x^3 - 4*x^4)/x]^2)/(64*x^2 + 4*x^4 - 16*x^5 + 16*x^6),x]

[Out]

Log[-((16 + x^2 - 4*x^3 + 4*x^4)/x)]^2/(4*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 1106

Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1], c = Coeff[P4, x, 2], d = Coeff[P4
, x, 3], e = Coeff[P4, x, 4]}, Subst[Int[SimplifyIntegrand[(a + d^4/(256*e^3) - (b*d)/(8*e) + (c - (3*d^2)/(8*
e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0] && NeQ[d, 0]] /; FreeQ[p, x] &&
 PolyQ[P4, x, 4] && NeQ[p, 2] && NeQ[p, 3]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1127

Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, Dist[1/2, Int[(q + x^2)/(
a + b*x^2 + c*x^4), x], x] - Dist[1/2, Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] && Lt
Q[b^2 - 4*a*c, 0] && PosQ[a*c]

Rule 1161

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rule 1164

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rule 1169

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rule 1662

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
 k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1680

Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] &&  !IGtQ[p, 0]

Rule 2525

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
 1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 2528

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*(RGx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*
RFx^p])^n, RGx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalF
unctionQ[RGx, x] && IGtQ[n, 0]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(32+2x216x3+24x4)log(16x2+4x34x4x)+(16x2+4x34x4)log2(16x2+4x34x4x)4x2(16+x24x3+4x4)dx=14(32+2x216x3+24x4)log(16x2+4x34x4x)+(16x2+4x34x4)log2(16x2+4x34x4x)x2(16+x24x3+4x4)dx=14(2(16+x28x3+12x4)log(16x2+4x34x4x)x2(16+x24x3+4x4)log2(16x2+4x34x4x)x2)dx=(14log2(16x2+4x34x4x)x2dx)+12(16+x28x3+12x4)log(16x2+4x34x4x)x2(16+x24x3+4x4)dx=log2(16+x24x3+4x4x)4x12(16+x28x3+12x4)log(16x2+4x34x4x)x2(16+x24x3+4x4)dx+12(log(16x2+4x34x4x)x2+2(16x+8x2)log(16x2+4x34x4x)16+x24x3+4x4)dx=log2(16+x24x3+4x4x)4x12log(16x2+4x34x4x)x2dx12(log(16x2+4x34x4x)x2+2(16x+8x2)log(16x2+4x34x4x)16+x24x3+4x4)dx+(16x+8x2)log(16x2+4x34x4x)16+x24x3+4x4dx=log(16+x24x3+4x4x)2x+log2(16+x24x3+4x4x)4x1216+x28x3+12x4x2(16+x24x3+4x4)dx+12log(16x2+4x34x4x)x2dx(16x+8x2)log(16x2+4x34x4x)16+x24x3+4x4dx+(log(16x2+4x34x4x)16+x24x3+4x46xlog(16x2+4x34x4x)16+x24x3+4x4+8x2log(16x2+4x34x4x)16+x24x3+4x4)dx=log2(16+x24x3+4x4x)4x+1216+x28x3+12x4x2(16+x24x3+4x4)dx12(1x2+2(16x+8x2)16+x24x3+4x4)dx6xlog(16x2+4x34x4x)16+x24x3+4x4dx+8x2log(16x2+4x34x4x)16+x24x3+4x4dx+log(16x2+4x34x4x)16+x24x3+4x4dx(log(16x2+4x34x4x)16+x24x3+4x46xlog(16x2+4x34x4x)16+x24x3+4x4+8x2log(16x2+4x34x4x)16+x24x3+4x4)dx=12x+log2(16+x24x3+4x4x)4x+12(1x2+2(16x+8x2)16+x24x3+4x4)dx16x+8x216+x24x3+4x4dx=log2(16+x24x3+4x4x)4x+16x+8x216+x24x3+4x4dxSubst(128x(1+4x)102532x2+256x4dx,x,14+x)=log2(16+x24x3+4x4x)4x128Subst(x(1+4x)102532x2+256x4dx,x,14+x)+Subst(128x(1+4x)102532x2+256x4dx,x,14+x)=log2(16+x24x3+4x4x)4x+128Subst(x102532x2+256x4dx,x,14+x)128Subst(4x2102532x2+256x4dx,x,14+x)+128Subst(x(1+4x)102532x2+256x4dx,x,14+x)=log2(16+x24x3+4x4x)4x+64Subst(1102532x+256x2dx,x,(14+x)2)128Subst(x102532x2+256x4dx,x,14+x)+128Subst(4x2102532x2+256x4dx,x,14+x)512Subst(x2102532x2+256x4dx,x,14+x)=log2(16+x24x3+4x4x)4x64Subst(1102532x+256x2dx,x,(14+x)2)128Subst(11048576x2dx,x,256x(1+2x))+256Subst(54116x2102532x2+256x4dx,x,14+x)256Subst(54116+x2102532x2+256x4dx,x,14+x)+512Subst(x2102532x2+256x4dx,x,14+x)=18tan1(14(12x)x)+log2(16+x24x3+4x4x)4x12Subst(1541161212(1+541)x+x2dx,x,14+x)12Subst(154116+1212(1+541)x+x2dx,x,14+x)+128Subst(11048576x2dx,x,256x(1+2x))256Subst(54116x2102532x2+256x4dx,x,14+x)+256Subst(54116+x2102532x2+256x4dx,x,14+x)21+541Subst(1212(1+541)+2x541161212(1+541)xx2dx,x,14+x)21+541Subst(1212(1+541)2x54116+1212(1+541)xx2dx,x,14+x)=log2(16+x24x3+4x4x)4x+21+541log(5412(1+541)(14x)+(1+4x)2)21+541log(541+2(1+541)(14x)+(1+4x)2)+12Subst(1541161212(1+541)x+x2dx,x,14+x)+12Subst(154116+1212(1+541)x+x2dx,x,14+x)+21+541Subst(1212(1+541)+2x541161212(1+541)xx2dx,x,14+x)+21+541Subst(1212(1+541)2x54116+1212(1+541)xx2dx,x,14+x)+Subst(118(1541)x2dx,x,12(112(1+541)+4x))+Subst(118(1541)x2dx,x,14(2+2+1041+8x))=221+541tan1(22+1041+8x2+1041)221+541tan1(2+2+1041+8x2+1041)+log2(16+x24x3+4x4x)4xSubst(118(1541)x2dx,x,12(112(1+541)+4x))Subst(118(1541)x2dx,x,14(2+2+1041+8x))=log2(16+x24x3+4x4x)4x

________________________________________________________________________________________

Mathematica [F]  time = 180.00, size = 0, normalized size = 0.00 $Aborted

Verification is not applicable to the result.

[In]

Integrate[((-32 + 2*x^2 - 16*x^3 + 24*x^4)*Log[(-16 - x^2 + 4*x^3 - 4*x^4)/x] + (-16 - x^2 + 4*x^3 - 4*x^4)*Lo
g[(-16 - x^2 + 4*x^3 - 4*x^4)/x]^2)/(64*x^2 + 4*x^4 - 16*x^5 + 16*x^6),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [A]  time = 0.74, size = 28, normalized size = 0.97 log(4x44x3+x2+16x)24x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^4+4*x^3-x^2-16)*log((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*log((-4*x^4+4*x^3-x^2
-16)/x))/(16*x^6-16*x^5+4*x^4+64*x^2),x, algorithm="fricas")

[Out]

1/4*log(-(4*x^4 - 4*x^3 + x^2 + 16)/x)^2/x

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: TypeError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^4+4*x^3-x^2-16)*log((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*log((-4*x^4+4*x^3-x^2
-16)/x))/(16*x^6-16*x^5+4*x^4+64*x^2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%{poly1[46450893462272555700247723121885101557651700311
39394747419

________________________________________________________________________________________

maple [A]  time = 0.05, size = 30, normalized size = 1.03




method result size



norman ln(4x4+4x3x216x)24x 30
risch ln(4x4+4x3x216x)24x 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*x^4+4*x^3-x^2-16)*ln((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*ln((-4*x^4+4*x^3-x^2-16)/x))
/(16*x^6-16*x^5+4*x^4+64*x^2),x,method=_RETURNVERBOSE)

[Out]

1/4*ln((-4*x^4+4*x^3-x^2-16)/x)^2/x

________________________________________________________________________________________

maxima [A]  time = 0.78, size = 52, normalized size = 1.79 log(4x4+4x3x216)22log(4x4+4x3x216)log(x)+log(x)24x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^4+4*x^3-x^2-16)*log((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*log((-4*x^4+4*x^3-x^2
-16)/x))/(16*x^6-16*x^5+4*x^4+64*x^2),x, algorithm="maxima")

[Out]

1/4*(log(-4*x^4 + 4*x^3 - x^2 - 16)^2 - 2*log(-4*x^4 + 4*x^3 - x^2 - 16)*log(x) + log(x)^2)/x

________________________________________________________________________________________

mupad [B]  time = 2.07, size = 28, normalized size = 0.97 ln(4x44x3+x2+16x)24x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(-(x^2 - 4*x^3 + 4*x^4 + 16)/x)*(2*x^2 - 16*x^3 + 24*x^4 - 32) - log(-(x^2 - 4*x^3 + 4*x^4 + 16)/x)^2*
(x^2 - 4*x^3 + 4*x^4 + 16))/(64*x^2 + 4*x^4 - 16*x^5 + 16*x^6),x)

[Out]

log(-(x^2 - 4*x^3 + 4*x^4 + 16)/x)^2/(4*x)

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 22, normalized size = 0.76 log(4x4+4x3x216x)24x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x**4+4*x**3-x**2-16)*ln((-4*x**4+4*x**3-x**2-16)/x)**2+(24*x**4-16*x**3+2*x**2-32)*ln((-4*x**4+
4*x**3-x**2-16)/x))/(16*x**6-16*x**5+4*x**4+64*x**2),x)

[Out]

log((-4*x**4 + 4*x**3 - x**2 - 16)/x)**2/(4*x)

________________________________________________________________________________________