3.32.41
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [A] time = 5.67, antiderivative size = 30, normalized size of antiderivative = 1.03,
number of steps used = 51, number of rules used = 19, integrand size = 107, = 0.178, Rules used
= {6741, 12, 6742, 2528, 2525, 1680, 1662, 1107, 618, 204, 1127, 1161, 1164, 628, 1106, 1094, 634,
1673, 1169}
Antiderivative was successfully verified.
[In]
Int[((-32 + 2*x^2 - 16*x^3 + 24*x^4)*Log[(-16 - x^2 + 4*x^3 - 4*x^4)/x] + (-16 - x^2 + 4*x^3 - 4*x^4)*Log[(-16
- x^2 + 4*x^3 - 4*x^4)/x]^2)/(64*x^2 + 4*x^4 - 16*x^5 + 16*x^6),x]
[Out]
Log[-((16 + x^2 - 4*x^3 + 4*x^4)/x)]^2/(4*x)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 204
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])
Rule 618
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
Rule 628
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
Rule 634
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && !NiceSqrtQ[b^2 - 4*a*c]
Rule 1094
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]
Rule 1106
Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1], c = Coeff[P4, x, 2], d = Coeff[P4
, x, 3], e = Coeff[P4, x, 4]}, Subst[Int[SimplifyIntegrand[(a + d^4/(256*e^3) - (b*d)/(8*e) + (c - (3*d^2)/(8*
e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2, 0] && NeQ[d, 0]] /; FreeQ[p, x] &&
PolyQ[P4, x, 4] && NeQ[p, 2] && NeQ[p, 3]
Rule 1107
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
x, x^2], x] /; FreeQ[{a, b, c, p}, x]
Rule 1127
Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, Dist[1/2, Int[(q + x^2)/(
a + b*x^2 + c*x^4), x], x] - Dist[1/2, Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] && Lt
Q[b^2 - 4*a*c, 0] && PosQ[a*c]
Rule 1161
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))
Rule 1164
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
- x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && !GtQ[b^2
- 4*a*c, 0]
Rule 1169
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
Rule 1662
Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] && !PolyQ[Pq, x^2]
Rule 1673
Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && !PolyQ[Pq, x^2]
Rule 1680
Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] && !IGtQ[p, 0]
Rule 2525
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]
Rule 2528
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*(RGx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*
RFx^p])^n, RGx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalF
unctionQ[RGx, x] && IGtQ[n, 0]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [F] time = 180.00, size = 0, normalized size = 0.00
Verification is not applicable to the result.
[In]
Integrate[((-32 + 2*x^2 - 16*x^3 + 24*x^4)*Log[(-16 - x^2 + 4*x^3 - 4*x^4)/x] + (-16 - x^2 + 4*x^3 - 4*x^4)*Lo
g[(-16 - x^2 + 4*x^3 - 4*x^4)/x]^2)/(64*x^2 + 4*x^4 - 16*x^5 + 16*x^6),x]
[Out]
$Aborted
________________________________________________________________________________________
fricas [A] time = 0.74, size = 28, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^4+4*x^3-x^2-16)*log((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*log((-4*x^4+4*x^3-x^2
-16)/x))/(16*x^6-16*x^5+4*x^4+64*x^2),x, algorithm="fricas")
[Out]
1/4*log(-(4*x^4 - 4*x^3 + x^2 + 16)/x)^2/x
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^4+4*x^3-x^2-16)*log((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*log((-4*x^4+4*x^3-x^2
-16)/x))/(16*x^6-16*x^5+4*x^4+64*x^2),x, algorithm="giac")
[Out]
Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%{poly1[46450893462272555700247723121885101557651700311
39394747419
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 1.03
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*x^4+4*x^3-x^2-16)*ln((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*ln((-4*x^4+4*x^3-x^2-16)/x))
/(16*x^6-16*x^5+4*x^4+64*x^2),x,method=_RETURNVERBOSE)
[Out]
1/4*ln((-4*x^4+4*x^3-x^2-16)/x)^2/x
________________________________________________________________________________________
maxima [A] time = 0.78, size = 52, normalized size = 1.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^4+4*x^3-x^2-16)*log((-4*x^4+4*x^3-x^2-16)/x)^2+(24*x^4-16*x^3+2*x^2-32)*log((-4*x^4+4*x^3-x^2
-16)/x))/(16*x^6-16*x^5+4*x^4+64*x^2),x, algorithm="maxima")
[Out]
1/4*(log(-4*x^4 + 4*x^3 - x^2 - 16)^2 - 2*log(-4*x^4 + 4*x^3 - x^2 - 16)*log(x) + log(x)^2)/x
________________________________________________________________________________________
mupad [B] time = 2.07, size = 28, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(-(x^2 - 4*x^3 + 4*x^4 + 16)/x)*(2*x^2 - 16*x^3 + 24*x^4 - 32) - log(-(x^2 - 4*x^3 + 4*x^4 + 16)/x)^2*
(x^2 - 4*x^3 + 4*x^4 + 16))/(64*x^2 + 4*x^4 - 16*x^5 + 16*x^6),x)
[Out]
log(-(x^2 - 4*x^3 + 4*x^4 + 16)/x)^2/(4*x)
________________________________________________________________________________________
sympy [A] time = 0.22, size = 22, normalized size = 0.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x**4+4*x**3-x**2-16)*ln((-4*x**4+4*x**3-x**2-16)/x)**2+(24*x**4-16*x**3+2*x**2-32)*ln((-4*x**4+
4*x**3-x**2-16)/x))/(16*x**6-16*x**5+4*x**4+64*x**2),x)
[Out]
log((-4*x**4 + 4*x**3 - x**2 - 16)/x)**2/(4*x)
________________________________________________________________________________________