Optimal. Leaf size=25 \[ 2+\frac {3}{1+x}-\log \left (5 \left (6 e^5+(3+x)^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 3, number of rules used = 2, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {2074, 628} \begin {gather*} \frac {3}{x+1}-\log \left (x^2+6 x+3 \left (3+2 e^5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3}{(1+x)^2}+\frac {2 (-3-x)}{3 \left (3+2 e^5\right )+6 x+x^2}\right ) \, dx\\ &=\frac {3}{1+x}+2 \int \frac {-3-x}{3 \left (3+2 e^5\right )+6 x+x^2} \, dx\\ &=\frac {3}{1+x}-\log \left (3 \left (3+2 e^5\right )+6 x+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.88 \begin {gather*} \frac {3}{1+x}-\log \left (6 e^5+(3+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 26, normalized size = 1.04 \begin {gather*} -\frac {{\left (x + 1\right )} \log \left (x^{2} + 6 \, x + 6 \, e^{5} + 9\right ) - 3}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 23, normalized size = 0.92 \begin {gather*} \frac {3}{x + 1} - \log \left (x^{2} + 6 \, x + 6 \, e^{5} + 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.96
method | result | size |
default | \(-\ln \left (x^{2}+6 \,{\mathrm e}^{5}+6 x +9\right )+\frac {3}{x +1}\) | \(24\) |
norman | \(-\ln \left (x^{2}+6 \,{\mathrm e}^{5}+6 x +9\right )+\frac {3}{x +1}\) | \(24\) |
risch | \(-\ln \left (x^{2}+6 \,{\mathrm e}^{5}+6 x +9\right )+\frac {3}{x +1}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 23, normalized size = 0.92 \begin {gather*} \frac {3}{x + 1} - \log \left (x^{2} + 6 \, x + 6 \, e^{5} + 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 23, normalized size = 0.92 \begin {gather*} \frac {3}{x+1}-\ln \left (x^2+6\,x+6\,{\mathrm {e}}^5+9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 19, normalized size = 0.76 \begin {gather*} - \log {\left (x^{2} + 6 x + 9 + 6 e^{5} \right )} + \frac {3}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________