Optimal. Leaf size=28 \[ \left (\frac {1}{10} \left (e^x+x\right )-(1-x)^2 (5+x+\log (x))^2\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 6.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25000-185350 x+e^{2 x} x+283981 x^2-34040 x^3-128940 x^4+8150 x^5+25000 x^6+5800 x^7+400 x^8+e^x \left (-100+331 x+221 x^2-320 x^3-120 x^4-10 x^5\right )+\left (15000-139120 x+253000 x^2-92000 x^3-76680 x^4+24600 x^5+13800 x^6+1400 x^7+e^x \left (-20+120 x+40 x^2-120 x^3-20 x^4\right )\right ) \log (x)+\left (3000-38410 x+82240 x^2-48030 x^3-10200 x^4+9600 x^5+1800 x^6+e^x \left (10 x-10 x^3\right )\right ) \log ^2(x)+\left (200-4600 x+11600 x^2-9200 x^3+1000 x^4+1000 x^5\right ) \log ^3(x)+\left (-200 x+600 x^2-600 x^3+200 x^4\right ) \log ^4(x)}{50 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 177, normalized size = 6.32 \begin {gather*} \frac {1}{50} \left (\frac {e^{2 x}}{2}-100250 x+\frac {190801 x^2}{2}-4060 x^3-27780 x^4+790 x^5+3800 x^6+800 x^7+50 x^8-e^x \left (250-401 x+60 x^2+80 x^3+10 x^4\right )+20 (-1+x)^2 (5+x) \left (250-e^x-401 x+60 x^2+80 x^3+10 x^4\right ) \log (x)+10 (-1+x)^2 \left (750-e^x-1201 x+180 x^2+240 x^3+30 x^4\right ) \log ^2(x)+200 (-1+x)^4 (5+x) \log ^3(x)+50 (-1+x)^4 \log ^4(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 221, normalized size = 7.89 \begin {gather*} x^{8} + 16 \, x^{7} + 76 \, x^{6} + \frac {79}{5} \, x^{5} + {\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1\right )} \log \relax (x)^{4} - \frac {2778}{5} \, x^{4} + 4 \, {\left (x^{5} + x^{4} - 14 \, x^{3} + 26 \, x^{2} - 19 \, x + 5\right )} \log \relax (x)^{3} - \frac {406}{5} \, x^{3} + \frac {1}{5} \, {\left (30 \, x^{6} + 180 \, x^{5} - 270 \, x^{4} - 1321 \, x^{3} + 3332 \, x^{2} - {\left (x^{2} - 2 \, x + 1\right )} e^{x} - 2701 \, x + 750\right )} \log \relax (x)^{2} + \frac {190801}{100} \, x^{2} - \frac {1}{50} \, {\left (10 \, x^{4} + 80 \, x^{3} + 60 \, x^{2} - 401 \, x + 250\right )} e^{x} + \frac {2}{5} \, {\left (10 \, x^{7} + 110 \, x^{6} + 210 \, x^{5} - 891 \, x^{4} - 1093 \, x^{3} + 4659 \, x^{2} - {\left (x^{3} + 3 \, x^{2} - 9 \, x + 5\right )} e^{x} - 4255 \, x + 1250\right )} \log \relax (x) - 2005 \, x + \frac {1}{100} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 327, normalized size = 11.68 \begin {gather*} x^{8} + 4 \, x^{7} \log \relax (x) + 6 \, x^{6} \log \relax (x)^{2} + 4 \, x^{5} \log \relax (x)^{3} + x^{4} \log \relax (x)^{4} + 16 \, x^{7} + 44 \, x^{6} \log \relax (x) + 36 \, x^{5} \log \relax (x)^{2} + 4 \, x^{4} \log \relax (x)^{3} - 4 \, x^{3} \log \relax (x)^{4} + 76 \, x^{6} + 84 \, x^{5} \log \relax (x) - 54 \, x^{4} \log \relax (x)^{2} - 56 \, x^{3} \log \relax (x)^{3} + 6 \, x^{2} \log \relax (x)^{4} + \frac {79}{5} \, x^{5} - \frac {1}{5} \, x^{4} e^{x} - \frac {1782}{5} \, x^{4} \log \relax (x) - \frac {2}{5} \, x^{3} e^{x} \log \relax (x) - \frac {1321}{5} \, x^{3} \log \relax (x)^{2} - \frac {1}{5} \, x^{2} e^{x} \log \relax (x)^{2} + 104 \, x^{2} \log \relax (x)^{3} - 4 \, x \log \relax (x)^{4} - \frac {2778}{5} \, x^{4} - \frac {8}{5} \, x^{3} e^{x} - \frac {2186}{5} \, x^{3} \log \relax (x) - \frac {6}{5} \, x^{2} e^{x} \log \relax (x) + \frac {3332}{5} \, x^{2} \log \relax (x)^{2} + \frac {2}{5} \, x e^{x} \log \relax (x)^{2} - 76 \, x \log \relax (x)^{3} + \log \relax (x)^{4} - \frac {406}{5} \, x^{3} - \frac {6}{5} \, x^{2} e^{x} + \frac {9318}{5} \, x^{2} \log \relax (x) + \frac {18}{5} \, x e^{x} \log \relax (x) - \frac {2701}{5} \, x \log \relax (x)^{2} - \frac {1}{5} \, e^{x} \log \relax (x)^{2} + 20 \, \log \relax (x)^{3} + \frac {190801}{100} \, x^{2} + \frac {401}{50} \, x e^{x} - 1702 \, x \log \relax (x) - 2 \, e^{x} \log \relax (x) + 150 \, \log \relax (x)^{2} - 2005 \, x + \frac {1}{100} \, e^{\left (2 \, x\right )} - 5 \, e^{x} + 500 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 248, normalized size = 8.86
method | result | size |
risch | \(\frac {\left (50 x^{4}-200 x^{3}+300 x^{2}-200 x +50\right ) \ln \relax (x )^{4}}{50}+\frac {\left (200 x^{5}+200 x^{4}-2800 x^{3}+5200 x^{2}-3800 x +1000\right ) \ln \relax (x )^{3}}{50}+\frac {\left (300 x^{6}+1800 x^{5}-2700 x^{4}-13210 x^{3}-10 \,{\mathrm e}^{x} x^{2}+33320 x^{2}+20 \,{\mathrm e}^{x} x -27010 x -10 \,{\mathrm e}^{x}+7500\right ) \ln \relax (x )^{2}}{50}+\frac {\left (200 x^{7}+2200 x^{6}+4200 x^{5}-17820 x^{4}-20 \,{\mathrm e}^{x} x^{3}-21860 x^{3}-60 \,{\mathrm e}^{x} x^{2}+93180 x^{2}+180 \,{\mathrm e}^{x} x -85100 x -100 \,{\mathrm e}^{x}\right ) \ln \relax (x )}{50}+x^{8}+16 x^{7}+76 x^{6}+\frac {79 x^{5}}{5}-\frac {2778 x^{4}}{5}-\frac {406 x^{3}}{5}+\frac {190801 x^{2}}{100}-2005 x +500 \ln \relax (x )+\frac {{\mathrm e}^{2 x}}{100}-\frac {{\mathrm e}^{x} x^{4}}{5}-\frac {8 \,{\mathrm e}^{x} x^{3}}{5}-\frac {6 \,{\mathrm e}^{x} x^{2}}{5}+\frac {401 \,{\mathrm e}^{x} x}{50}-5 \,{\mathrm e}^{x}\) | \(248\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{8} + 4 \, x^{7} \log \relax (x) + 16 \, x^{7} + 46 \, x^{6} \log \relax (x) + 76 \, x^{6} + \frac {492}{5} \, x^{5} \log \relax (x) + \frac {79}{5} \, x^{5} - \frac {1917}{5} \, x^{4} \log \relax (x) + {\left (x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1\right )} \log \relax (x)^{4} - \frac {2778}{5} \, x^{4} - \frac {1840}{3} \, x^{3} \log \relax (x) + 4 \, {\left (x^{5} + x^{4} - 14 \, x^{3} + 26 \, x^{2} - 19 \, x + 5\right )} \log \relax (x)^{3} - \frac {406}{5} \, x^{3} + 2530 \, x^{2} \log \relax (x) + \frac {1}{5} \, {\left (30 \, x^{6} + 180 \, x^{5} - 270 \, x^{4} - 1321 \, x^{3} + 3332 \, x^{2} - 2701 \, x\right )} \log \relax (x)^{2} + \frac {190801}{100} \, x^{2} - \frac {1}{5} \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{x} - \frac {12}{5} \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} - \frac {1}{5} \, {\left ({\left (x^{2} - 2 \, x + 1\right )} \log \relax (x)^{2} + 2 \, {\left (x^{3} + 3 \, x^{2} - 9 \, x + 11\right )} \log \relax (x)\right )} e^{x} - \frac {32}{5} \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} + \frac {221}{50} \, {\left (x - 1\right )} e^{x} - \frac {1}{15} \, {\left (30 \, x^{6} + 216 \, x^{5} - 405 \, x^{4} - 2642 \, x^{3} + 9996 \, x^{2} - 16206 \, x\right )} \log \relax (x) - \frac {13912}{5} \, x \log \relax (x) + \frac {12}{5} \, e^{x} \log \relax (x) + 150 \, \log \relax (x)^{2} - 2005 \, x - \frac {22}{5} \, {\rm Ei}\relax (x) + \frac {1}{100} \, e^{\left (2 \, x\right )} + \frac {331}{50} \, e^{x} + \frac {1}{50} \, \int \frac {20 \, {\left (x^{3} + 3 \, x^{2} - 9 \, x + 11\right )} e^{x}}{x}\,{d x} + 500 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.43, size = 229, normalized size = 8.18 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}}{100}-2005\,x+500\,\ln \relax (x)-{\mathrm {e}}^x\,\left (\frac {x^4}{5}+\frac {8\,x^3}{5}+\frac {6\,x^2}{5}-\frac {401\,x}{50}+5\right )+{\ln \relax (x)}^4\,\left (x^4-4\,x^3+6\,x^2-4\,x+1\right )-{\ln \relax (x)}^2\,\left (\frac {2701\,x}{5}+{\mathrm {e}}^x\,\left (\frac {x^2}{5}-\frac {2\,x}{5}+\frac {1}{5}\right )-\frac {3332\,x^2}{5}+\frac {1321\,x^3}{5}+54\,x^4-36\,x^5-6\,x^6-150\right )-\ln \relax (x)\,\left (1702\,x-\frac {9318\,x^2}{5}+\frac {2186\,x^3}{5}+\frac {1782\,x^4}{5}-84\,x^5-44\,x^6-4\,x^7+{\mathrm {e}}^x\,\left (\frac {2\,x^3}{5}+\frac {6\,x^2}{5}-\frac {18\,x}{5}+2\right )\right )+{\ln \relax (x)}^3\,\left (4\,x^5+4\,x^4-56\,x^3+104\,x^2-76\,x+20\right )+\frac {190801\,x^2}{100}-\frac {406\,x^3}{5}-\frac {2778\,x^4}{5}+\frac {79\,x^5}{5}+76\,x^6+16\,x^7+x^8 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.94, size = 272, normalized size = 9.71 \begin {gather*} x^{8} + 16 x^{7} + 76 x^{6} + \frac {79 x^{5}}{5} - \frac {2778 x^{4}}{5} - \frac {406 x^{3}}{5} + \frac {190801 x^{2}}{100} - 2005 x + \left (x^{4} - 4 x^{3} + 6 x^{2} - 4 x + 1\right ) \log {\relax (x )}^{4} + \left (4 x^{5} + 4 x^{4} - 56 x^{3} + 104 x^{2} - 76 x + 20\right ) \log {\relax (x )}^{3} + \left (6 x^{6} + 36 x^{5} - 54 x^{4} - \frac {1321 x^{3}}{5} + \frac {3332 x^{2}}{5} - \frac {2701 x}{5} + 150\right ) \log {\relax (x )}^{2} + \left (4 x^{7} + 44 x^{6} + 84 x^{5} - \frac {1782 x^{4}}{5} - \frac {2186 x^{3}}{5} + \frac {9318 x^{2}}{5} - 1702 x\right ) \log {\relax (x )} + \frac {\left (- 1000 x^{4} - 2000 x^{3} \log {\relax (x )} - 8000 x^{3} - 1000 x^{2} \log {\relax (x )}^{2} - 6000 x^{2} \log {\relax (x )} - 6000 x^{2} + 2000 x \log {\relax (x )}^{2} + 18000 x \log {\relax (x )} + 40100 x - 1000 \log {\relax (x )}^{2} - 10000 \log {\relax (x )} - 25000\right ) e^{x}}{5000} + \frac {e^{2 x}}{100} + 500 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________