Optimal. Leaf size=17 \[ -3+e^{\frac {3}{4+2 x}}+\log (-3+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 18, normalized size of antiderivative = 1.06, number of steps used = 3, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6688, 2209} \begin {gather*} e^{\frac {3}{2 (x+2)}}+\log (3-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2209
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{-3+x}-\frac {3 e^{\frac {3}{4+2 x}}}{2 (2+x)^2}\right ) \, dx\\ &=\log (3-x)-\frac {3}{2} \int \frac {e^{\frac {3}{4+2 x}}}{(2+x)^2} \, dx\\ &=e^{\frac {3}{2 (2+x)}}+\log (3-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.94 \begin {gather*} e^{\frac {3}{4+2 x}}+\log (-3+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 13, normalized size = 0.76 \begin {gather*} e^{\left (\frac {3}{2 \, {\left (x + 2\right )}}\right )} + \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 29, normalized size = 1.71 \begin {gather*} e^{\left (\frac {3}{2 \, {\left (x + 2\right )}}\right )} - \log \left (\frac {3}{2 \, {\left (x + 2\right )}}\right ) + \log \left (\frac {15}{x + 2} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 14, normalized size = 0.82
method | result | size |
risch | \(\ln \left (x -3\right )+{\mathrm e}^{\frac {3}{2 \left (2+x \right )}}\) | \(14\) |
derivativedivides | \(\ln \left (-3+\frac {15}{2+x}\right )-\ln \left (\frac {3}{2 \left (2+x \right )}\right )+{\mathrm e}^{\frac {3}{2 \left (2+x \right )}}\) | \(30\) |
default | \(\ln \left (-3+\frac {15}{2+x}\right )-\ln \left (\frac {3}{2 \left (2+x \right )}\right )+{\mathrm e}^{\frac {3}{2 \left (2+x \right )}}\) | \(30\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {3}{2 x +4}}+2 \,{\mathrm e}^{\frac {3}{2 x +4}}}{2+x}+\ln \left (x -3\right )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 13, normalized size = 0.76 \begin {gather*} e^{\left (\frac {3}{2 \, {\left (x + 2\right )}}\right )} + \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.90, size = 15, normalized size = 0.88 \begin {gather*} \ln \left (x-3\right )+{\mathrm {e}}^{\frac {3}{2\,x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 12, normalized size = 0.71 \begin {gather*} e^{\frac {3}{2 x + 4}} + \log {\left (x - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________