Optimal. Leaf size=25 \[ \frac {27 e^x}{-4 x+x^2+2 x^3-\log \left (x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (54+108 x-162 x^2-135 x^3+54 x^4\right )-27 e^x x \log \left (x^2\right )}{16 x^3-8 x^4-15 x^5+4 x^6+4 x^7+\left (8 x^2-2 x^3-4 x^4\right ) \log \left (x^2\right )+x \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {27 e^x \left (2+4 x-6 x^2-5 x^3+2 x^4-x \log \left (x^2\right )\right )}{x \left (x \left (-4+x+2 x^2\right )-\log \left (x^2\right )\right )^2} \, dx\\ &=27 \int \frac {e^x \left (2+4 x-6 x^2-5 x^3+2 x^4-x \log \left (x^2\right )\right )}{x \left (x \left (-4+x+2 x^2\right )-\log \left (x^2\right )\right )^2} \, dx\\ &=27 \int \left (-\frac {2 e^x \left (-1-2 x+x^2+3 x^3\right )}{x \left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2}+\frac {e^x}{-4 x+x^2+2 x^3-\log \left (x^2\right )}\right ) \, dx\\ &=27 \int \frac {e^x}{-4 x+x^2+2 x^3-\log \left (x^2\right )} \, dx-54 \int \frac {e^x \left (-1-2 x+x^2+3 x^3\right )}{x \left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2} \, dx\\ &=27 \int \frac {e^x}{-4 x+x^2+2 x^3-\log \left (x^2\right )} \, dx-54 \int \left (-\frac {2 e^x}{\left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2}-\frac {e^x}{x \left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2}+\frac {e^x x}{\left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2}+\frac {3 e^x x^2}{\left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2}\right ) \, dx\\ &=27 \int \frac {e^x}{-4 x+x^2+2 x^3-\log \left (x^2\right )} \, dx+54 \int \frac {e^x}{x \left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2} \, dx-54 \int \frac {e^x x}{\left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2} \, dx+108 \int \frac {e^x}{\left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2} \, dx-162 \int \frac {e^x x^2}{\left (-4 x+x^2+2 x^3-\log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.81, size = 25, normalized size = 1.00 \begin {gather*} -\frac {27 e^x}{4 x-x^2-2 x^3+\log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 24, normalized size = 0.96 \begin {gather*} \frac {27 \, e^{x}}{2 \, x^{3} + x^{2} - 4 \, x - \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 0.96 \begin {gather*} \frac {27 \, e^{x}}{2 \, x^{3} + x^{2} - 4 \, x - \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.08, size = 74, normalized size = 2.96
method | result | size |
risch | \(-\frac {54 i {\mathrm e}^{x}}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i x^{3}-2 i x^{2}+8 i x +4 i \ln \relax (x )}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 22, normalized size = 0.88 \begin {gather*} \frac {27 \, e^{x}}{2 \, x^{3} + x^{2} - 4 \, x - 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (54\,x^4-135\,x^3-162\,x^2+108\,x+54\right )-27\,x\,\ln \left (x^2\right )\,{\mathrm {e}}^x}{x\,{\ln \left (x^2\right )}^2-\ln \left (x^2\right )\,\left (4\,x^4+2\,x^3-8\,x^2\right )+16\,x^3-8\,x^4-15\,x^5+4\,x^6+4\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 20, normalized size = 0.80 \begin {gather*} \frac {27 e^{x}}{2 x^{3} + x^{2} - 4 x - \log {\left (x^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________