Optimal. Leaf size=22 \[ 2 \left (5+x+e^{2+8 x+x^2} x\right )-\log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.27, number of steps used = 2, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {2288} \begin {gather*} \frac {2 e^{x^2+8 x+2} \left (x^2+4 x\right )}{x+4}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x+\int e^{2+8 x+x^2} \left (2+16 x+4 x^2\right ) \, dx\\ &=2 x+\frac {2 e^{2+8 x+x^2} \left (4 x+x^2\right )}{4+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 15, normalized size = 0.68 \begin {gather*} 2 \left (1+e^{2+8 x+x^2}\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 16, normalized size = 0.73 \begin {gather*} 2 \, x e^{\left (x^{2} + 8 \, x + 2\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 0.73 \begin {gather*} 2 \, x e^{\left (x^{2} + 8 \, x + 2\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.77
method | result | size |
default | \(2 x +2 x \,{\mathrm e}^{x^{2}+8 x +2}\) | \(17\) |
norman | \(2 x +2 x \,{\mathrm e}^{x^{2}+8 x +2}\) | \(17\) |
risch | \(2 x +2 x \,{\mathrm e}^{x^{2}+8 x +2}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.75, size = 125, normalized size = 5.68 \begin {gather*} -i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + 4 i\right ) e^{\left (-14\right )} - 2 \, {\left (\frac {{\left (x + 4\right )}^{3} \Gamma \left (\frac {3}{2}, -{\left (x + 4\right )}^{2}\right )}{\left (-{\left (x + 4\right )}^{2}\right )^{\frac {3}{2}}} - \frac {16 \, \sqrt {\pi } {\left (x + 4\right )} {\left (\operatorname {erf}\left (\sqrt {-{\left (x + 4\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (x + 4\right )}^{2}}} + 8 \, e^{\left ({\left (x + 4\right )}^{2}\right )}\right )} e^{\left (-14\right )} - 8 \, {\left (\frac {4 \, \sqrt {\pi } {\left (x + 4\right )} {\left (\operatorname {erf}\left (\sqrt {-{\left (x + 4\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (x + 4\right )}^{2}}} - e^{\left ({\left (x + 4\right )}^{2}\right )}\right )} e^{\left (-14\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 16, normalized size = 0.73 \begin {gather*} 2\,x\,\left ({\mathrm {e}}^{8\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^2+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.68 \begin {gather*} 2 x e^{x^{2} + 8 x + 2} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________