Optimal. Leaf size=32 \[ \frac {2 x}{5 \left (-x+e^x x \left (x-\left (-x+\frac {x}{\log (x)}\right )^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 10.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 e^x x \log (x)+e^x \left (8 x+2 x^2\right ) \log ^2(x)+e^x \left (-8 x-4 x^2\right ) \log ^3(x)+e^x \left (-2+2 x+2 x^2\right ) \log ^4(x)}{5 e^{2 x} x^4-20 e^{2 x} x^4 \log (x)+\left (10 e^x x^2+e^{2 x} \left (-10 x^3+30 x^4\right )\right ) \log ^2(x)+\left (-20 e^x x^2+e^{2 x} \left (20 x^3-20 x^4\right )\right ) \log ^3(x)+\left (5+e^x \left (-10 x+10 x^2\right )+e^{2 x} \left (5 x^2-10 x^3+5 x^4\right )\right ) \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^x \log (x) \left (-2 x+x (4+x) \log (x)-2 x (2+x) \log ^2(x)+\left (-1+x+x^2\right ) \log ^3(x)\right )}{5 \left (e^x x^2-2 e^x x^2 \log (x)+\left (1+e^x (-1+x) x\right ) \log ^2(x)\right )^2} \, dx\\ &=\frac {2}{5} \int \frac {e^x \log (x) \left (-2 x+x (4+x) \log (x)-2 x (2+x) \log ^2(x)+\left (-1+x+x^2\right ) \log ^3(x)\right )}{\left (e^x x^2-2 e^x x^2 \log (x)+\left (1+e^x (-1+x) x\right ) \log ^2(x)\right )^2} \, dx\\ &=\frac {2}{5} \int \left (-\frac {2 e^x x \log (x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}+\frac {4 e^x x \log ^2(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}+\frac {e^x x^2 \log ^2(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}-\frac {4 e^x x \log ^3(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}-\frac {2 e^x x^2 \log ^3(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}-\frac {e^x \log ^4(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}+\frac {e^x x \log ^4(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}+\frac {e^x x^2 \log ^4(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2}\right ) \, dx\\ &=\frac {2}{5} \int \frac {e^x x^2 \log ^2(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx-\frac {2}{5} \int \frac {e^x \log ^4(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx+\frac {2}{5} \int \frac {e^x x \log ^4(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx+\frac {2}{5} \int \frac {e^x x^2 \log ^4(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx-\frac {4}{5} \int \frac {e^x x \log (x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx-\frac {4}{5} \int \frac {e^x x^2 \log ^3(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx+\frac {8}{5} \int \frac {e^x x \log ^2(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx-\frac {8}{5} \int \frac {e^x x \log ^3(x)}{\left (e^x x^2-2 e^x x^2 \log (x)+\log ^2(x)-e^x x \log ^2(x)+e^x x^2 \log ^2(x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.24, size = 43, normalized size = 1.34 \begin {gather*} -\frac {2 \log ^2(x)}{5 \left (e^x x^2-2 e^x x^2 \log (x)+\left (1+e^x (-1+x) x\right ) \log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 43, normalized size = 1.34 \begin {gather*} \frac {2 \, \log \relax (x)^{2}}{5 \, {\left (2 \, x^{2} e^{x} \log \relax (x) - x^{2} e^{x} - {\left ({\left (x^{2} - x\right )} e^{x} + 1\right )} \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.73, size = 47, normalized size = 1.47 \begin {gather*} -\frac {2 \, \log \relax (x)^{2}}{5 \, {\left (x^{2} e^{x} \log \relax (x)^{2} - 2 \, x^{2} e^{x} \log \relax (x) - x e^{x} \log \relax (x)^{2} + x^{2} e^{x} + \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 88, normalized size = 2.75
method | result | size |
risch | \(-\frac {2}{5 \left ({\mathrm e}^{x} x^{2}-{\mathrm e}^{x} x +1\right )}-\frac {2 x^{2} {\mathrm e}^{x} \left (2 \ln \relax (x )-1\right )}{5 \left ({\mathrm e}^{x} x^{2}-{\mathrm e}^{x} x +1\right ) \left (x^{2} {\mathrm e}^{x} \ln \relax (x )^{2}-x \,{\mathrm e}^{x} \ln \relax (x )^{2}-2 x^{2} {\mathrm e}^{x} \ln \relax (x )+{\mathrm e}^{x} x^{2}+\ln \relax (x )^{2}\right )}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 44, normalized size = 1.38 \begin {gather*} \frac {2 \, \log \relax (x)^{2}}{5 \, {\left ({\left (2 \, x^{2} \log \relax (x) - {\left (x^{2} - x\right )} \log \relax (x)^{2} - x^{2}\right )} e^{x} - \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {-{\mathrm {e}}^x\,\left (2\,x^2+2\,x-2\right )\,{\ln \relax (x)}^4+{\mathrm {e}}^x\,\left (4\,x^2+8\,x\right )\,{\ln \relax (x)}^3-{\mathrm {e}}^x\,\left (2\,x^2+8\,x\right )\,{\ln \relax (x)}^2+4\,x\,{\mathrm {e}}^x\,\ln \relax (x)}{{\ln \relax (x)}^4\,\left ({\mathrm {e}}^{2\,x}\,\left (5\,x^4-10\,x^3+5\,x^2\right )-{\mathrm {e}}^x\,\left (10\,x-10\,x^2\right )+5\right )+5\,x^4\,{\mathrm {e}}^{2\,x}+{\ln \relax (x)}^2\,\left (10\,x^2\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x}\,\left (10\,x^3-30\,x^4\right )\right )-{\ln \relax (x)}^3\,\left (20\,x^2\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x}\,\left (20\,x^3-20\,x^4\right )\right )-20\,x^4\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.90, size = 49, normalized size = 1.53 \begin {gather*} - \frac {2 \log {\relax (x )}^{2}}{\left (5 x^{2} \log {\relax (x )}^{2} - 10 x^{2} \log {\relax (x )} + 5 x^{2} - 5 x \log {\relax (x )}^{2}\right ) e^{x} + 5 \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________