Optimal. Leaf size=29 \[ e^{-\frac {x^2}{e^x+x^2}} (1+3 (3-5 x)) x^2 \]
________________________________________________________________________________________
Rubi [F] time = 5.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {x^2}{e^x+x^2}} \left (20 x^5-45 x^6+e^{2 x} \left (20 x-45 x^2\right )+e^x \left (20 x^3-50 x^4-15 x^5\right )\right )}{e^{2 x}+2 e^x x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {x^2}{e^x+x^2}} \left (20 x^5-45 x^6+e^{2 x} \left (20 x-45 x^2\right )+e^x \left (20 x^3-50 x^4-15 x^5\right )\right )}{\left (e^x+x^2\right )^2} \, dx\\ &=\int \left (-5 e^{-\frac {x^2}{e^x+x^2}} x (-4+9 x)+\frac {5 e^{-\frac {x^2}{e^x+x^2}} x^5 \left (4-8 x+3 x^2\right )}{\left (e^x+x^2\right )^2}-\frac {5 e^{-\frac {x^2}{e^x+x^2}} x^3 \left (4-8 x+3 x^2\right )}{e^x+x^2}\right ) \, dx\\ &=-\left (5 \int e^{-\frac {x^2}{e^x+x^2}} x (-4+9 x) \, dx\right )+5 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^5 \left (4-8 x+3 x^2\right )}{\left (e^x+x^2\right )^2} \, dx-5 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^3 \left (4-8 x+3 x^2\right )}{e^x+x^2} \, dx\\ &=-\left (5 \int \left (-4 e^{-\frac {x^2}{e^x+x^2}} x+9 e^{-\frac {x^2}{e^x+x^2}} x^2\right ) \, dx\right )+5 \int \left (\frac {4 e^{-\frac {x^2}{e^x+x^2}} x^5}{\left (e^x+x^2\right )^2}-\frac {8 e^{-\frac {x^2}{e^x+x^2}} x^6}{\left (e^x+x^2\right )^2}+\frac {3 e^{-\frac {x^2}{e^x+x^2}} x^7}{\left (e^x+x^2\right )^2}\right ) \, dx-5 \int \left (\frac {4 e^{-\frac {x^2}{e^x+x^2}} x^3}{e^x+x^2}-\frac {8 e^{-\frac {x^2}{e^x+x^2}} x^4}{e^x+x^2}+\frac {3 e^{-\frac {x^2}{e^x+x^2}} x^5}{e^x+x^2}\right ) \, dx\\ &=15 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^7}{\left (e^x+x^2\right )^2} \, dx-15 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^5}{e^x+x^2} \, dx+20 \int e^{-\frac {x^2}{e^x+x^2}} x \, dx+20 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^5}{\left (e^x+x^2\right )^2} \, dx-20 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^3}{e^x+x^2} \, dx-40 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^6}{\left (e^x+x^2\right )^2} \, dx+40 \int \frac {e^{-\frac {x^2}{e^x+x^2}} x^4}{e^x+x^2} \, dx-45 \int e^{-\frac {x^2}{e^x+x^2}} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 26, normalized size = 0.90 \begin {gather*} -5 e^{-\frac {x^2}{e^x+x^2}} x^2 (-2+3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 27, normalized size = 0.93 \begin {gather*} -5 \, {\left (3 \, x^{3} - 2 \, x^{2}\right )} e^{\left (-\frac {x^{2}}{x^{2} + e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 27, normalized size = 0.93 \begin {gather*} -5 \, {\left (3 \, x^{3} - 2 \, x^{2}\right )} e^{\left (-\frac {x^{2}}{x^{2} + e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 0.93
method | result | size |
risch | \(\left (-15 x^{3}+10 x^{2}\right ) {\mathrm e}^{-\frac {x^{2}}{x^{2}+{\mathrm e}^{x}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -5 \, \int \frac {{\left (9 \, x^{6} - 4 \, x^{5} + {\left (9 \, x^{2} - 4 \, x\right )} e^{\left (2 \, x\right )} + {\left (3 \, x^{5} + 10 \, x^{4} - 4 \, x^{3}\right )} e^{x}\right )} e^{\left (-\frac {x^{2}}{x^{2} + e^{x}}\right )}}{x^{4} + 2 \, x^{2} e^{x} + e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {x^2}{{\mathrm {e}}^x+x^2}}\,\left ({\mathrm {e}}^{2\,x}\,\left (20\,x-45\,x^2\right )-{\mathrm {e}}^x\,\left (15\,x^5+50\,x^4-20\,x^3\right )+20\,x^5-45\,x^6\right )}{{\mathrm {e}}^{2\,x}+2\,x^2\,{\mathrm {e}}^x+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.97, size = 20, normalized size = 0.69 \begin {gather*} \left (- 15 x^{3} + 10 x^{2}\right ) e^{- \frac {x^{2}}{x^{2} + e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________