Optimal. Leaf size=15 \[ \frac {\left (-4-\frac {e^x}{10}\right )^4}{x^6} \]
________________________________________________________________________________________
Rubi [B] time = 0.15, antiderivative size = 52, normalized size of antiderivative = 3.47, number of steps used = 7, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {12, 14, 2197} \begin {gather*} \frac {128 e^x}{5 x^6}+\frac {24 e^{2 x}}{25 x^6}+\frac {2 e^{3 x}}{125 x^6}+\frac {e^{4 x}}{10000 x^6}+\frac {256}{x^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-7680000+e^{4 x} (-3+2 x)+e^{3 x} (-480+240 x)+e^{2 x} (-28800+9600 x)+e^x (-768000+128000 x)}{x^7} \, dx}{5000}\\ &=\frac {\int \left (-\frac {7680000}{x^7}+\frac {128000 e^x (-6+x)}{x^7}+\frac {9600 e^{2 x} (-3+x)}{x^7}+\frac {240 e^{3 x} (-2+x)}{x^7}+\frac {e^{4 x} (-3+2 x)}{x^7}\right ) \, dx}{5000}\\ &=\frac {256}{x^6}+\frac {\int \frac {e^{4 x} (-3+2 x)}{x^7} \, dx}{5000}+\frac {6}{125} \int \frac {e^{3 x} (-2+x)}{x^7} \, dx+\frac {48}{25} \int \frac {e^{2 x} (-3+x)}{x^7} \, dx+\frac {128}{5} \int \frac {e^x (-6+x)}{x^7} \, dx\\ &=\frac {256}{x^6}+\frac {128 e^x}{5 x^6}+\frac {24 e^{2 x}}{25 x^6}+\frac {2 e^{3 x}}{125 x^6}+\frac {e^{4 x}}{10000 x^6}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 14, normalized size = 0.93 \begin {gather*} \frac {\left (40+e^x\right )^4}{10000 x^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.88, size = 27, normalized size = 1.80 \begin {gather*} \frac {e^{\left (4 \, x\right )} + 160 \, e^{\left (3 \, x\right )} + 9600 \, e^{\left (2 \, x\right )} + 256000 \, e^{x} + 2560000}{10000 \, x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 27, normalized size = 1.80 \begin {gather*} \frac {e^{\left (4 \, x\right )} + 160 \, e^{\left (3 \, x\right )} + 9600 \, e^{\left (2 \, x\right )} + 256000 \, e^{x} + 2560000}{10000 \, x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 41, normalized size = 2.73
method | result | size |
default | \(\frac {256}{x^{6}}+\frac {24 \,{\mathrm e}^{2 x}}{25 x^{6}}+\frac {{\mathrm e}^{4 x}}{10000 x^{6}}+\frac {2 \,{\mathrm e}^{3 x}}{125 x^{6}}+\frac {128 \,{\mathrm e}^{x}}{5 x^{6}}\) | \(41\) |
risch | \(\frac {256}{x^{6}}+\frac {24 \,{\mathrm e}^{2 x}}{25 x^{6}}+\frac {{\mathrm e}^{4 x}}{10000 x^{6}}+\frac {2 \,{\mathrm e}^{3 x}}{125 x^{6}}+\frac {128 \,{\mathrm e}^{x}}{5 x^{6}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.90, size = 62, normalized size = 4.13 \begin {gather*} \frac {256}{x^{6}} + \frac {128}{5} \, \Gamma \left (-5, -x\right ) + \frac {1536}{25} \, \Gamma \left (-5, -2 \, x\right ) + \frac {1458}{125} \, \Gamma \left (-5, -3 \, x\right ) + \frac {256}{625} \, \Gamma \left (-5, -4 \, x\right ) + \frac {768}{5} \, \Gamma \left (-6, -x\right ) + \frac {9216}{25} \, \Gamma \left (-6, -2 \, x\right ) + \frac {8748}{125} \, \Gamma \left (-6, -3 \, x\right ) + \frac {1536}{625} \, \Gamma \left (-6, -4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 11, normalized size = 0.73 \begin {gather*} \frac {{\left ({\mathrm {e}}^x+40\right )}^4}{10000\,x^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.16, size = 48, normalized size = 3.20 \begin {gather*} \frac {256}{x^{6}} + \frac {15625 x^{18} e^{4 x} + 2500000 x^{18} e^{3 x} + 150000000 x^{18} e^{2 x} + 4000000000 x^{18} e^{x}}{156250000 x^{24}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________