Optimal. Leaf size=24 \[ 4+\log \left (x-\log \left (3-e^{\frac {e^4}{x^6}}+x+\log (4)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.67, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6, 6741, 6684} \begin {gather*} \log \left (x-\log \left (-e^{\frac {e^4}{x^6}}+x+3+\log (4)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^8+e^{\frac {e^4}{x^6}} \left (-6 e^4-x^7\right )+x^7 (2+\log (4))}{3 x^8-e^{\frac {e^4}{x^6}} x^8+x^9+x^8 \log (4)+\left (-3 x^7+e^{\frac {e^4}{x^6}} x^7-x^8-x^7 \log (4)\right ) \log \left (3-e^{\frac {e^4}{x^6}}+x+\log (4)\right )} \, dx\\ &=\int \frac {x^8+e^{\frac {e^4}{x^6}} \left (-6 e^4-x^7\right )+x^7 (2+\log (4))}{-e^{\frac {e^4}{x^6}} x^8+x^9+x^8 (3+\log (4))+\left (-3 x^7+e^{\frac {e^4}{x^6}} x^7-x^8-x^7 \log (4)\right ) \log \left (3-e^{\frac {e^4}{x^6}}+x+\log (4)\right )} \, dx\\ &=\int \frac {-x^8-e^{\frac {e^4}{x^6}} \left (-6 e^4-x^7\right )-x^7 (2+\log (4))}{x^7 \left (e^{\frac {e^4}{x^6}}-x-3 \left (1+\frac {2 \log (2)}{3}\right )\right ) \left (x-\log \left (3-e^{\frac {e^4}{x^6}}+x+\log (4)\right )\right )} \, dx\\ &=\log \left (x-\log \left (3-e^{\frac {e^4}{x^6}}+x+\log (4)\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.92 \begin {gather*} \log \left (x-\log \left (3-e^{\frac {e^4}{x^6}}+x+\log (4)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 22, normalized size = 0.92 \begin {gather*} \log \left (-x + \log \left (x - e^{\left (\frac {e^{4}}{x^{6}}\right )} + 2 \, \log \relax (2) + 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.21, size = 39, normalized size = 1.62 \begin {gather*} \log \left (x - \log \left ({\left (x e^{4} + 2 \, e^{4} \log \relax (2) + 3 \, e^{4} - e^{\left (\frac {4 \, x^{6} + e^{4}}{x^{6}}\right )}\right )} e^{\left (-4\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.96
method | result | size |
risch | \(\ln \left (\ln \left (-{\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{6}}}+2 \ln \relax (2)+3+x \right )-x \right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.87, size = 22, normalized size = 0.92 \begin {gather*} \log \left (-x + \log \left (x - e^{\left (\frac {e^{4}}{x^{6}}\right )} + 2 \, \log \relax (2) + 3\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,x^7\,\ln \relax (2)-{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^6}}\,\left (x^7+6\,{\mathrm {e}}^4\right )+2\,x^7+x^8}{2\,x^8\,\ln \relax (2)-x^8\,{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^6}}-\ln \left (x-{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^6}}+2\,\ln \relax (2)+3\right )\,\left (2\,x^7\,\ln \relax (2)-x^7\,{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^6}}+3\,x^7+x^8\right )+3\,x^8+x^9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 20, normalized size = 0.83 \begin {gather*} \log {\left (- x + \log {\left (x - e^{\frac {e^{4}}{x^{6}}} + 2 \log {\relax (2 )} + 3 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________