Optimal. Leaf size=22 \[ -4-\frac {e^{4+\frac {x}{3}+\frac {x}{\log (x)}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}} \left (3 x-3 x \log (x)+(3-x) \log ^2(x)\right )}{3 x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}} \left (3 x-3 x \log (x)+(3-x) \log ^2(x)\right )}{x^2 \log ^2(x)} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}} (3-x)}{x^2}+\frac {3 e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log ^2(x)}-\frac {3 e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log (x)}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}} (3-x)}{x^2} \, dx+\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log ^2(x)} \, dx-\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log (x)} \, dx\\ &=\frac {1}{3} \int \left (\frac {3 e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x^2}-\frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x}\right ) \, dx+\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log ^2(x)} \, dx-\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log (x)} \, dx\\ &=-\left (\frac {1}{3} \int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x} \, dx\right )+\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x^2} \, dx+\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log ^2(x)} \, dx-\int \frac {e^{\frac {3 x+(12+x) \log (x)}{3 \log (x)}}}{x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 20, normalized size = 0.91 \begin {gather*} -\frac {e^{4+\frac {x}{3}+\frac {x}{\log (x)}}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 22, normalized size = 1.00 \begin {gather*} -\frac {e^{\left (\frac {{\left (x + 12\right )} \log \relax (x) + 3 \, x}{3 \, \log \relax (x)}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 1.09 \begin {gather*} -\frac {e^{\left (\frac {x \log \relax (x) + 3 \, x + 12 \, \log \relax (x)}{3 \, \log \relax (x)}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 1.05
method | result | size |
norman | \(-\frac {{\mathrm e}^{\frac {\left (x +12\right ) \ln \relax (x )+3 x}{3 \ln \relax (x )}}}{x}\) | \(23\) |
risch | \(-\frac {{\mathrm e}^{\frac {x \ln \relax (x )+12 \ln \relax (x )+3 x}{3 \ln \relax (x )}}}{x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.89, size = 17, normalized size = 0.77 \begin {gather*} -\frac {e^{\left (\frac {1}{3} \, x + \frac {x}{\log \relax (x)} + 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 18, normalized size = 0.82 \begin {gather*} -\frac {{\mathrm {e}}^{x/3}\,{\mathrm {e}}^4\,{\mathrm {e}}^{\frac {x}{\ln \relax (x)}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 17, normalized size = 0.77 \begin {gather*} - \frac {e^{\frac {x + \frac {\left (x + 12\right ) \log {\relax (x )}}{3}}{\log {\relax (x )}}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________