Optimal. Leaf size=31 \[ e^{\frac {\left (-4+\frac {32 e^{-2-(-4+x)^2}}{x}\right )^2}{\log ^2(x)}}-x \]
________________________________________________________________________________________
Rubi [F] time = 41.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64 e^{-36+16 x-2 x^2} \left (-\frac {1}{64} e^{36-16 x+2 x^2} x^3 \log ^3(x)+\exp \left (\frac {64 e^{-36+16 x-2 x^2} \left (16-4 e^{18-8 x+x^2} x+\frac {1}{4} e^{36-16 x+2 x^2} x^2\right )}{x^2 \log ^2(x)}\right ) \left (-32-\frac {1}{2} e^{36-16 x+2 x^2} x^2+\left (-32+256 x-64 x^2\right ) \log (x)+\frac {1}{8} e^{18-8 x+x^2} x \left (64+\left (32-256 x+64 x^2\right ) \log (x)\right )\right )\right )}{x^3 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=64 \int \frac {e^{-36+16 x-2 x^2} \left (-\frac {1}{64} e^{36-16 x+2 x^2} x^3 \log ^3(x)+\exp \left (\frac {64 e^{-36+16 x-2 x^2} \left (16-4 e^{18-8 x+x^2} x+\frac {1}{4} e^{36-16 x+2 x^2} x^2\right )}{x^2 \log ^2(x)}\right ) \left (-32-\frac {1}{2} e^{36-16 x+2 x^2} x^2+\left (-32+256 x-64 x^2\right ) \log (x)+\frac {1}{8} e^{18-8 x+x^2} x \left (64+\left (32-256 x+64 x^2\right ) \log (x)\right )\right )\right )}{x^3 \log ^3(x)} \, dx\\ &=64 \int \left (-\frac {1}{64}-\frac {\exp \left (-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (-8 e^{8 x}+e^{18+x^2} x\right ) \left (-8 e^{8 x}+e^{18+x^2} x-8 e^{8 x} \left (1-8 x+2 x^2\right ) \log (x)\right )}{2 x^3 \log ^3(x)}\right ) \, dx\\ &=-x-32 \int \frac {\exp \left (-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (-8 e^{8 x}+e^{18+x^2} x\right ) \left (-8 e^{8 x}+e^{18+x^2} x-8 e^{8 x} \left (1-8 x+2 x^2\right ) \log (x)\right )}{x^3 \log ^3(x)} \, dx\\ &=-x-32 \int \left (\frac {\exp \left (36+2 x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x \log ^3(x)}+\frac {64 \exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (1+\log (x)-8 x \log (x)+2 x^2 \log (x)\right )}{x^3 \log ^3(x)}-\frac {8 \exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (2+\log (x)-8 x \log (x)+2 x^2 \log (x)\right )}{x^2 \log ^3(x)}\right ) \, dx\\ &=-x-32 \int \frac {\exp \left (36+2 x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x \log ^3(x)} \, dx+256 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (2+\log (x)-8 x \log (x)+2 x^2 \log (x)\right )}{x^2 \log ^3(x)} \, dx-2048 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (1+\log (x)-8 x \log (x)+2 x^2 \log (x)\right )}{x^3 \log ^3(x)} \, dx\\ &=-x-32 \int \frac {\exp \left (\frac {16 e^{-36-2 x^2} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )}{x \log ^3(x)} \, dx+256 \int \left (\frac {2 \exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^3(x)}+\frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (1-8 x+2 x^2\right )}{x^2 \log ^2(x)}\right ) \, dx-2048 \int \left (\frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^3 \log ^3(x)}+\frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (1-8 x+2 x^2\right )}{x^3 \log ^2(x)}\right ) \, dx\\ &=-x-32 \int \frac {\exp \left (\frac {16 e^{-36-2 x^2} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )}{x \log ^3(x)} \, dx+256 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (1-8 x+2 x^2\right )}{x^2 \log ^2(x)} \, dx+512 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^3(x)} \, dx-2048 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^3 \log ^3(x)} \, dx-2048 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right ) \left (1-8 x+2 x^2\right )}{x^3 \log ^2(x)} \, dx\\ &=-x-32 \int \frac {\exp \left (\frac {16 e^{-36-2 x^2} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )}{x \log ^3(x)} \, dx+256 \int \left (\frac {2 \exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{\log ^2(x)}+\frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^2(x)}-\frac {8 \exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x \log ^2(x)}\right ) \, dx+512 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^3(x)} \, dx-2048 \int \left (\frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^3 \log ^2(x)}-\frac {8 \exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^2(x)}+\frac {2 \exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x \log ^2(x)}\right ) \, dx-2048 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^3 \log ^3(x)} \, dx\\ &=-x-32 \int \frac {\exp \left (\frac {16 e^{-36-2 x^2} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )}{x \log ^3(x)} \, dx+256 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^2(x)} \, dx+512 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^3(x)} \, dx+512 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{\log ^2(x)} \, dx-2048 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^3 \log ^3(x)} \, dx-2048 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^3 \log ^2(x)} \, dx-2048 \int \frac {\exp \left (18+8 x+x^2-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x \log ^2(x)} \, dx-4096 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x \log ^2(x)} \, dx+16384 \int \frac {\exp \left (16 x-2 \left (18+x^2-\frac {8 e^{-2 \left (18+x^2\right )} \left (-8 e^{8 x}+e^{18+x^2} x\right )^2}{x^2 \log ^2(x)}\right )\right )}{x^2 \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 39, normalized size = 1.26 \begin {gather*} e^{\frac {16 \left (-8 e^{8 x-x^2}+e^{18} x\right )^2}{e^{36} x^2 \log ^2(x)}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 81, normalized size = 2.61 \begin {gather*} -x + e^{\left (\frac {16 \, {\left (e^{\left (2 \, x^{2} - 16 \, x + 2 \, \log \left (\frac {1}{8} \, x\right ) + 36\right )} - 2 \, e^{\left (x^{2} - 8 \, x + \log \left (\frac {1}{8} \, x\right ) + 18\right )} + 1\right )} e^{\left (-2 \, x^{2} + 16 \, x - 2 \, \log \left (\frac {1}{8} \, x\right ) - 36\right )}}{9 \, \log \relax (2)^{2} + 6 \, \log \relax (2) \log \left (\frac {1}{8} \, x\right ) + \log \left (\frac {1}{8} \, x\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 55, normalized size = 1.77
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {16 \left (x^{2} {\mathrm e}^{2 x^{2}-16 x +36}-16 x \,{\mathrm e}^{x^{2}-8 x +18}+64\right ) {\mathrm e}^{-2 x^{2}+16 x -36}}{\ln \relax (x )^{2} x^{2}}}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 52, normalized size = 1.68 \begin {gather*} -x + e^{\left (-\frac {256 \, e^{\left (-x^{2} + 8 \, x - 18\right )}}{x \log \relax (x)^{2}} + \frac {16}{\log \relax (x)^{2}} + \frac {1024 \, e^{\left (-2 \, x^{2} + 16 \, x - 36\right )}}{x^{2} \log \relax (x)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.04, size = 56, normalized size = 1.81 \begin {gather*} {\mathrm {e}}^{\frac {16}{{\ln \relax (x)}^2}}\,{\mathrm {e}}^{-\frac {256\,{\mathrm {e}}^{8\,x}\,{\mathrm {e}}^{-18}\,{\mathrm {e}}^{-x^2}}{x\,{\ln \relax (x)}^2}}\,{\mathrm {e}}^{\frac {1024\,{\mathrm {e}}^{16\,x}\,{\mathrm {e}}^{-36}\,{\mathrm {e}}^{-2\,x^2}}{x^2\,{\ln \relax (x)}^2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.30, size = 56, normalized size = 1.81 \begin {gather*} - x + e^{\frac {64 \left (\frac {x^{2} e^{2 x^{2} - 16 x + 36}}{4} - 4 x e^{x^{2} - 8 x + 18} + 16\right ) e^{- 2 x^{2} + 16 x - 36}}{x^{2} \log {\relax (x )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________