Optimal. Leaf size=23 \[ \log \left (\frac {2}{x+\log \left (\log \left (\log \left (\frac {3 x}{-6+e^{3+x}+x}\right )\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.27, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 2, number of rules used = 2, integrand size = 170, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6688, 6684} \begin {gather*} -\log \left (x+\log \left (\log \left (\log \left (-\frac {3 x}{-x-e^{x+3}+6}\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6-e^{3+x} (-1+x)+x \left (-6+e^{3+x}+x\right ) \log \left (\frac {3 x}{-6+e^{3+x}+x}\right ) \log \left (\log \left (\frac {3 x}{-6+e^{3+x}+x}\right )\right )}{\left (6-e^{3+x}-x\right ) x \log \left (\frac {3 x}{-6+e^{3+x}+x}\right ) \log \left (\log \left (\frac {3 x}{-6+e^{3+x}+x}\right )\right ) \left (x+\log \left (\log \left (\log \left (\frac {3 x}{-6+e^{3+x}+x}\right )\right )\right )\right )} \, dx\\ &=-\log \left (x+\log \left (\log \left (\log \left (-\frac {3 x}{6-e^{3+x}-x}\right )\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 21, normalized size = 0.91 \begin {gather*} -\log \left (x+\log \left (\log \left (\log \left (\frac {3 x}{-6+e^{3+x}+x}\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 20, normalized size = 0.87 \begin {gather*} -\log \left (x + \log \left (\log \left (\log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right )\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{2} + x e^{\left (x + 3\right )} - 6 \, x\right )} \log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right ) \log \left (\log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right )\right ) - {\left (x - 1\right )} e^{\left (x + 3\right )} - 6}{{\left (x^{2} + x e^{\left (x + 3\right )} - 6 \, x\right )} \log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right ) \log \left (\log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right )\right ) \log \left (\log \left (\log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right )\right )\right ) + {\left (x^{3} + x^{2} e^{\left (x + 3\right )} - 6 \, x^{2}\right )} \log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right ) \log \left (\log \left (\frac {3 \, x}{x + e^{\left (x + 3\right )} - 6}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.36, size = 93, normalized size = 4.04
method | result | size |
risch | \(-\ln \left (x +\ln \left (\ln \left (\ln \relax (3)+\ln \relax (x )-\ln \left ({\mathrm e}^{3+x}+x -6\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{3+x}+x -6}\right ) \left (-\mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{3+x}+x -6}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{3+x}+x -6}\right )+\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{3+x}+x -6}\right )\right )}{2}\right )\right )\right )\) | \(93\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.21, size = 22, normalized size = 0.96 \begin {gather*} -\log \left (x + \log \left (\log \left (\log \relax (3) - \log \left (x + e^{\left (x + 3\right )} - 6\right ) + \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 20, normalized size = 0.87 \begin {gather*} -\ln \left (x+\ln \left (\ln \left (\ln \left (\frac {3\,x}{x+{\mathrm {e}}^{x+3}-6}\right )\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________